2018-07-19 15:26:29 +02:00

896 lines
24 KiB
C

/*
* drivers/cpufreq/cpufreq_ondemand_x.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (c) 2013 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller, simpler
*/
/* User tunabble controls */
#define DEF_FREQUENCY_UP_THRESHOLD (70)
#define ANY_CPU_DEF_FREQUENCY_UP_THRESHOLD (70)
#define MULTI_CORE_DEF_FREQUENCY_UP_THRESHOLD (70)
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
#define DEF_MIDDLE_GRID_STEP (14)
#define DEF_HIGH_GRID_STEP (20)
#define DEF_MIDDLE_GRID_LOAD (55)
#define DEF_HIGH_GRID_LOAD (79)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define DEF_SAMPLING_RATE (20000)
#define DEF_SYNC_FREQUENCY (1267200)
#define DEF_OPTIMAL_FREQUENCY (1574400)
#define DEF_OPTIMAL_MAX_FREQ (1728000)
/* Kernel tunabble controls */
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
#define MAX_SAMPLING_DOWN_FACTOR (3)
#define MIN_FREQUENCY_UP_THRESHOLD (11)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
#define MIN_FREQUENCY_DOWN_DIFFERENTIAL (1)
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
#define MIN_SAMPLING_RATE_RATIO (2)
static unsigned int min_sampling_rate;
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (100)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
static void do_dbs_timer(struct work_struct *work);
/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
struct cpu_dbs_info_s {
u64 prev_cpu_idle;
u64 prev_cpu_iowait;
u64 prev_cpu_wall;
u64 prev_cpu_nice;
/*
* Used to keep track of load in the previous interval. However, when
* explicitly set to zero, it is used as a flag to ensure that we copy
* the previous load to the current interval only once, upon the first
* wake-up from idle.
*/
unsigned int prev_load;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_jiffies;
unsigned int freq_hi_jiffies;
unsigned int rate_mult;
unsigned int max_load;
unsigned int cpu;
unsigned int sample_type:1;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
wait_queue_head_t sync_wq;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info);
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
/*
* dbs_mutex protects dbs_enable and dbs_info during start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
static struct workqueue_struct *dbs_wq;
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int up_threshold;
unsigned int up_threshold_multi_core;
unsigned int optimal_freq;
unsigned int up_threshold_any_cpu_load;
unsigned int micro_freq_up_threshold;
unsigned int sync_freq;
unsigned int sampling_down_factor;
unsigned int optimal_max_freq;
unsigned int middle_grid_step;
unsigned int high_grid_step;
unsigned int middle_grid_load;
unsigned int high_grid_load;
} dbs_tuners_ins = {
.up_threshold_multi_core = MULTI_CORE_DEF_FREQUENCY_UP_THRESHOLD,
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.up_threshold_any_cpu_load = ANY_CPU_DEF_FREQUENCY_UP_THRESHOLD,
.micro_freq_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD,
.middle_grid_step = DEF_MIDDLE_GRID_STEP,
.high_grid_step = DEF_HIGH_GRID_STEP,
.middle_grid_load = DEF_MIDDLE_GRID_LOAD,
.high_grid_load = DEF_HIGH_GRID_LOAD,
.sync_freq = DEF_SYNC_FREQUENCY,
.optimal_freq = DEF_OPTIMAL_FREQUENCY,
.optimal_max_freq = DEF_OPTIMAL_MAX_FREQ,
.sampling_rate = DEF_SAMPLING_RATE,
};
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", min_sampling_rate);
}
define_one_global_ro(sampling_rate_min);
/* cpufreq_ondemand_x Governor Tunables */
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
show_one(sampling_rate, sampling_rate);
show_one(up_threshold, up_threshold);
show_one(up_threshold_multi_core, up_threshold_multi_core);
show_one(sampling_down_factor, sampling_down_factor);
show_one(optimal_freq, optimal_freq);
show_one(up_threshold_any_cpu_load, up_threshold_any_cpu_load);
show_one(micro_freq_up_threshold, micro_freq_up_threshold);
show_one(middle_grid_step, middle_grid_step);
show_one(high_grid_step, high_grid_step);
show_one(middle_grid_load, middle_grid_load);
show_one(high_grid_load, high_grid_load);
show_one(sync_freq, sync_freq);
show_one(optimal_max_freq, optimal_max_freq);
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret = 0;
int mpd = strcmp(current->comm, "mpdecision");
if (mpd == 0)
return ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
return count;
}
static ssize_t store_sync_freq(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret = 0;
int mpd = strcmp(current->comm, "mpdecision");
if (mpd == 0)
return ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.sync_freq = input;
return count;
}
static ssize_t store_optimal_freq(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret = 0;
int mpd = strcmp(current->comm, "mpdecision");
if (mpd == 0)
return ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.optimal_freq = input;
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold = input;
return count;
}
static ssize_t store_up_threshold_multi_core(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold_multi_core = input;
return count;
}
static ssize_t store_up_threshold_any_cpu_load(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold_any_cpu_load = input;
return count;
}
static ssize_t store_middle_grid_step(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.middle_grid_step = input;
return count;
}
static ssize_t store_high_grid_step(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.high_grid_step = input;
return count;
}
static ssize_t store_optimal_max_freq(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret = 0;
int mpd = strcmp(current->comm, "mpdecision");
if (mpd == 0)
return ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.optimal_max_freq = input;
return count;
}
static ssize_t store_middle_grid_load(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.middle_grid_load = input;
return count;
}
static ssize_t store_high_grid_load(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.high_grid_load = input;
return count;
}
static ssize_t store_micro_freq_up_threshold(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.micro_freq_up_threshold = input;
return count;
}
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
dbs_tuners_ins.sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(od_cpu_dbs_info, j);
dbs_info->rate_mult = 1;
}
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(up_threshold);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(up_threshold_multi_core);
define_one_global_rw(optimal_freq);
define_one_global_rw(up_threshold_any_cpu_load);
define_one_global_rw(micro_freq_up_threshold);
define_one_global_rw(sync_freq);
define_one_global_rw(optimal_max_freq);
define_one_global_rw(middle_grid_step);
define_one_global_rw(high_grid_step);
define_one_global_rw(middle_grid_load);
define_one_global_rw(high_grid_load);
static struct attribute *dbs_attributes[] = {
&sampling_rate_min.attr,
&sampling_rate.attr,
&up_threshold.attr,
&sampling_down_factor.attr,
&up_threshold_multi_core.attr,
&optimal_freq.attr,
&optimal_max_freq.attr,
&up_threshold_any_cpu_load.attr,
&micro_freq_up_threshold.attr,
&sync_freq.attr,
&middle_grid_step.attr,
&high_grid_step.attr,
&middle_grid_load.attr,
&high_grid_load.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "ondemand_x",
};
/************************** sysfs end ************************/
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
if (p->cur == p->max)
return;
__cpufreq_driver_target(p, freq, CPUFREQ_RELATION_L);
}
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
/* Extrapolated load of this CPU */
unsigned int load_at_max_freq = 0;
unsigned int max_load_freq;
/* Current load across this CPU */
unsigned int cur_load = 0;
unsigned int max_load_other_cpu = 0;
unsigned int sampling_rate;
struct cpufreq_policy *policy;
unsigned int j;
sampling_rate = dbs_tuners_ins.sampling_rate * this_dbs_info->rate_mult;
this_dbs_info->freq_lo = 0;
policy = this_dbs_info->cur_policy;
if (policy == NULL)
return;
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate, we look for a the lowest
* frequency which can sustain the load while keeping idle time over
* 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
*/
/* Get Absolute Load - in terms of freq */
max_load_freq = 0;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load_freq;
int freq_avg;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
/*
* For the purpose of ondemand_x, waiting for disk IO is an
* indication that you're performance critical, and not that
* the system is actually idle. So subtract the iowait time
* from the cpu idle time.
*/
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, 0);
wall_time = (unsigned int)
(cur_wall_time - j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int)
(cur_idle_time - j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/*
* If the CPU had gone completely idle, and a task just woke up
* on this CPU now, it would be unfair to calculate 'load' the
* usual way for this elapsed time-window, because it will show
* near-zero load, irrespective of how CPU intensive the new
* task is. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, we reuse the 'load' from the previous
* time-window and give this task a chance to start with a
* reasonably high CPU frequency. (However, we shouldn't over-do
* this copy, lest we get stuck at a high load (high frequency)
* for too long, even when the current system load has actually
* dropped down. So we perform the copy only once, upon the
* first wake-up from idle.)
*
*
* Detecting this situation is easy: the governor's deferrable
* timer would not have fired during CPU-idle periods. Hence
* an unusually large 'wall_time' (as compared to the sampling
* rate) indicates this scenario.
*
* prev_load can be zero in two cases and we must recalculate it
* for both cases:
* - during long idle intervals
* - explicitly set to zero
*/
if (unlikely(wall_time > (2 * sampling_rate) &&
j_dbs_info->prev_load)) {
cur_load = j_dbs_info->prev_load;
j_dbs_info->max_load = cur_load;
/*
* Perform a destructive copy, to ensure that we copy
* the previous load only once, upon the first wake-up
* from idle.
*/
j_dbs_info->prev_load = 0;
} else {
cur_load = 100 * (wall_time - idle_time) / wall_time;
j_dbs_info->max_load = max(cur_load, j_dbs_info->prev_load);
j_dbs_info->prev_load = cur_load;
}
// freq_avg = __cpufreq_driver_getavg(policy, j);
if (policy == NULL)
return;
// if (freq_avg <= 0)
// freq_avg = policy->cur;
load_freq = cur_load * freq_avg;
if (load_freq > max_load_freq)
max_load_freq = load_freq;
}
for_each_online_cpu(j) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
if (j == policy->cpu)
continue;
if (max_load_other_cpu < j_dbs_info->max_load)
max_load_other_cpu = j_dbs_info->max_load;
}
/* calculate the scaled load across CPU */
load_at_max_freq = (cur_load * policy->cur)/policy->max;
cpufreq_notify_utilization(policy, load_at_max_freq);
/* Check for frequency increase */
if (max_load_freq > (dbs_tuners_ins.up_threshold * policy->cur)) {
int freq_target, freq_div;
freq_target = 0; freq_div = 0;
if (load_at_max_freq > dbs_tuners_ins.high_grid_load) {
freq_div = (policy->max * dbs_tuners_ins.high_grid_step) / 100;
freq_target = min(policy->max, policy->cur + freq_div);
} else if (load_at_max_freq > dbs_tuners_ins.middle_grid_load) {
freq_div = (policy->max * dbs_tuners_ins.middle_grid_step) / 100;
freq_target = min(policy->max, policy->cur + freq_div);
} else {
if (policy->max < dbs_tuners_ins.optimal_max_freq)
freq_target = policy->max;
else
freq_target = dbs_tuners_ins.optimal_max_freq;
}
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
this_dbs_info->rate_mult =
dbs_tuners_ins.sampling_down_factor;
dbs_freq_increase(policy, freq_target);
return;
}
if (num_online_cpus() > 1) {
if (max_load_other_cpu >
dbs_tuners_ins.up_threshold_any_cpu_load) {
if (policy->cur < dbs_tuners_ins.sync_freq)
dbs_freq_increase(policy,
dbs_tuners_ins.sync_freq);
return;
}
if (max_load_freq > (dbs_tuners_ins.up_threshold_multi_core *
policy->cur)) {
if (policy->cur < dbs_tuners_ins.optimal_freq)
dbs_freq_increase(policy,
dbs_tuners_ins.optimal_freq);
return;
}
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
return;
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy.
*/
if (max_load_freq <
(dbs_tuners_ins.up_threshold * policy->cur)) {
unsigned int freq_next;
freq_next = max_load_freq / dbs_tuners_ins.up_threshold;
/* No longer fully busy, reset rate_mult */
this_dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (num_online_cpus() > 1) {
if (max_load_other_cpu >
dbs_tuners_ins.up_threshold_multi_core
&& freq_next <
dbs_tuners_ins.sync_freq)
freq_next = dbs_tuners_ins.sync_freq;
if (max_load_freq >
(dbs_tuners_ins.up_threshold_multi_core *
policy->cur) &&
freq_next < dbs_tuners_ins.optimal_freq)
freq_next = dbs_tuners_ins.optimal_freq;
}
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
}
}
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
int sample_type = dbs_info->sample_type;
int delay;
if (unlikely(!cpu_online(dbs_info->cpu) || !dbs_info->cur_policy))
return;
mutex_lock(&dbs_info->timer_mutex);
/* Common NORMAL_SAMPLE setup */
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
if (sample_type == DBS_NORMAL_SAMPLE) {
dbs_check_cpu(dbs_info);
if (dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
dbs_info->sample_type = DBS_SUB_SAMPLE;
delay = dbs_info->freq_hi_jiffies;
} else {
/* We want all CPUs to do sampling nearly on
* same jiffy
*/
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
* dbs_info->rate_mult);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
}
} else {
__cpufreq_driver_target(dbs_info->cur_policy,
dbs_info->freq_lo, CPUFREQ_RELATION_H);
delay = dbs_info->freq_lo_jiffies;
}
queue_delayed_work_on(dbs_info->cpu, dbs_wq, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
queue_delayed_work_on(dbs_info->cpu, dbs_wq, &dbs_info->work, delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
cancel_delayed_work_sync(&dbs_info->work);
}
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int j;
int rc;
this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy))
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_enable++;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
unsigned int prev_load;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall, 0);
prev_load = (unsigned int)
(j_dbs_info->prev_cpu_wall - j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_load = 100 * prev_load /
(unsigned int) j_dbs_info->prev_cpu_wall;
}
cpu = policy->cpu;
this_dbs_info->cpu = cpu;
this_dbs_info->rate_mult = 1;
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
unsigned int latency;
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
dbs_enable--;
mutex_unlock(&dbs_mutex);
return rc;
}
/* policy latency is in nS. Convert it to uS first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
min_sampling_rate = max(min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
if (latency != 1)
dbs_tuners_ins.sampling_rate =
max(dbs_tuners_ins.sampling_rate,
latency * LATENCY_MULTIPLIER);
if (dbs_tuners_ins.optimal_freq == 0)
dbs_tuners_ins.optimal_freq = policy->cpuinfo.min_freq;
if (dbs_tuners_ins.sync_freq == 0)
dbs_tuners_ins.sync_freq = policy->cpuinfo.min_freq;
}
mutex_unlock(&dbs_mutex);
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
dbs_enable--;
/* If device is being removed, policy is no longer
* valid. */
this_dbs_info->cur_policy = NULL;
if (!dbs_enable)
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
mutex_unlock(&dbs_mutex);
break;
case CPUFREQ_GOV_LIMITS:
/* If device is being removed, skip set limits */
if (!this_dbs_info->cur_policy || !policy)
break;
mutex_lock(&this_dbs_info->timer_mutex);
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->cur, CPUFREQ_RELATION_L);
dbs_check_cpu(this_dbs_info);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND_X
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand_x = {
.name = "ondemand_x",
.governor = cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
u64 idle_time;
unsigned int i;
int cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
dbs_tuners_ins.up_threshold = dbs_tuners_ins.micro_freq_up_threshold;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
} else {
/* For correct statistics, we need 10 ticks for each measure */
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
}
dbs_wq = alloc_workqueue("ondemand_x_dbs_wq", WQ_HIGHPRI, 0);
if (!dbs_wq) {
printk(KERN_ERR "Failed to create ondemand_x_dbs_wq workqueue\n");
return -EFAULT;
}
for_each_possible_cpu(i) {
struct cpu_dbs_info_s *this_dbs_info =
&per_cpu(od_cpu_dbs_info, i);
mutex_init(&this_dbs_info->timer_mutex);
init_waitqueue_head(&this_dbs_info->sync_wq);
}
return cpufreq_register_governor(&cpufreq_gov_ondemand_x);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
unsigned int i;
cpufreq_unregister_governor(&cpufreq_gov_ondemand_x);
for_each_possible_cpu(i) {
struct cpu_dbs_info_s *this_dbs_info =
&per_cpu(od_cpu_dbs_info, i);
mutex_destroy(&this_dbs_info->timer_mutex);
}
destroy_workqueue(dbs_wq);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand_x' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND_X
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);