1237 lines
36 KiB
C
1237 lines
36 KiB
C
/*
|
|
* linux/drivers/thermal/cpu_cooling.c
|
|
*
|
|
* Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
|
|
* Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
|
|
*
|
|
* Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/thermal.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/err.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_cooling.h>
|
|
#include <linux/exynos-ss.h>
|
|
|
|
#include <trace/events/thermal.h>
|
|
|
|
#include <soc/samsung/tmu.h>
|
|
#include <soc/samsung/cal-if.h>
|
|
#include <soc/samsung/ect_parser.h>
|
|
|
|
#if defined(CONFIG_SOC_EXYNOS8895) && defined(CONFIG_SOC_EMULATOR8895)
|
|
#include <dt-bindings/clock/emulator8895.h>
|
|
#elif defined(CONFIG_SOC_EXYNOS8895) && !defined(CONFIG_SOC_EMULATOR8895)
|
|
#include <dt-bindings/clock/exynos8895.h>
|
|
#elif defined(CONFIG_SOC_EXYNOS7872)
|
|
#include <dt-bindings/clock/exynos7872.h>
|
|
#elif defined(CONFIG_SOC_EXYNOS7885)
|
|
#include <dt-bindings/clock/exynos7885.h>
|
|
#endif
|
|
|
|
/*
|
|
* Cooling state <-> CPUFreq frequency
|
|
*
|
|
* Cooling states are translated to frequencies throughout this driver and this
|
|
* is the relation between them.
|
|
*
|
|
* Highest cooling state corresponds to lowest possible frequency.
|
|
*
|
|
* i.e.
|
|
* level 0 --> 1st Max Freq
|
|
* level 1 --> 2nd Max Freq
|
|
* ...
|
|
*/
|
|
|
|
/**
|
|
* struct power_table - frequency to power conversion
|
|
* @frequency: frequency in KHz
|
|
* @power: power in mW
|
|
*
|
|
* This structure is built when the cooling device registers and helps
|
|
* in translating frequency to power and viceversa.
|
|
*/
|
|
struct power_table {
|
|
u32 frequency;
|
|
u32 power;
|
|
};
|
|
|
|
static DEFINE_IDR(cpufreq_idr);
|
|
static DEFINE_MUTEX(cooling_cpufreq_lock);
|
|
|
|
static unsigned int cpufreq_dev_count;
|
|
|
|
static DEFINE_MUTEX(cooling_list_lock);
|
|
static LIST_HEAD(cpufreq_dev_list);
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(cpu_notifier);
|
|
|
|
static enum tmu_noti_state_t cpu_tstate = TMU_NORMAL;
|
|
|
|
/**
|
|
* get_idr - function to get a unique id.
|
|
* @idr: struct idr * handle used to create a id.
|
|
* @id: int * value generated by this function.
|
|
*
|
|
* This function will populate @id with an unique
|
|
* id, using the idr API.
|
|
*
|
|
* Return: 0 on success, an error code on failure.
|
|
*/
|
|
static int get_idr(struct idr *idr, int *id)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&cooling_cpufreq_lock);
|
|
ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
|
|
mutex_unlock(&cooling_cpufreq_lock);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
*id = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* release_idr - function to free the unique id.
|
|
* @idr: struct idr * handle used for creating the id.
|
|
* @id: int value representing the unique id.
|
|
*/
|
|
static void release_idr(struct idr *idr, int id)
|
|
{
|
|
mutex_lock(&cooling_cpufreq_lock);
|
|
idr_remove(idr, id);
|
|
mutex_unlock(&cooling_cpufreq_lock);
|
|
}
|
|
|
|
/* Below code defines functions to be used for cpufreq as cooling device */
|
|
|
|
/**
|
|
* get_level: Find the level for a particular frequency
|
|
* @cpufreq_dev: cpufreq_dev for which the property is required
|
|
* @freq: Frequency
|
|
*
|
|
* Return: level on success, THERMAL_CSTATE_INVALID on error.
|
|
*/
|
|
static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
|
|
unsigned int freq)
|
|
{
|
|
unsigned long level;
|
|
|
|
for (level = 0; level <= cpufreq_dev->max_level; level++) {
|
|
if (freq == cpufreq_dev->freq_table[level])
|
|
return level;
|
|
|
|
if (freq > cpufreq_dev->freq_table[level])
|
|
break;
|
|
}
|
|
|
|
return THERMAL_CSTATE_INVALID;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_cooling_get_level - for a given cpu, return the cooling level.
|
|
* @cpu: cpu for which the level is required
|
|
* @freq: the frequency of interest
|
|
*
|
|
* This function will match the cooling level corresponding to the
|
|
* requested @freq and return it.
|
|
*
|
|
* Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
|
|
* otherwise.
|
|
*/
|
|
unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
|
|
{
|
|
struct cpufreq_cooling_device *cpufreq_dev;
|
|
unsigned long level = 0;
|
|
|
|
mutex_lock(&cooling_list_lock);
|
|
list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
|
|
if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
|
|
mutex_unlock(&cooling_list_lock);
|
|
level = get_level(cpufreq_dev, freq);
|
|
|
|
if (level == THERMAL_CSTATE_INVALID && freq > cpufreq_dev->freq_table[0])
|
|
level = 0;
|
|
|
|
return level;
|
|
}
|
|
}
|
|
mutex_unlock(&cooling_list_lock);
|
|
|
|
pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
|
|
return THERMAL_CSTATE_INVALID;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
|
|
|
|
/**
|
|
* cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
|
|
* @nb: struct notifier_block * with callback info.
|
|
* @event: value showing cpufreq event for which this function invoked.
|
|
* @data: callback-specific data
|
|
*
|
|
* Callback to hijack the notification on cpufreq policy transition.
|
|
* Every time there is a change in policy, we will intercept and
|
|
* update the cpufreq policy with thermal constraints.
|
|
*
|
|
* Return: 0 (success)
|
|
*/
|
|
static int cpufreq_thermal_notifier(struct notifier_block *nb,
|
|
unsigned long event, void *data)
|
|
{
|
|
struct cpufreq_policy *policy = data;
|
|
unsigned long clipped_freq;
|
|
struct cpufreq_cooling_device *cpufreq_dev;
|
|
|
|
if (event != CPUFREQ_ADJUST)
|
|
return NOTIFY_DONE;
|
|
|
|
mutex_lock(&cooling_list_lock);
|
|
list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
|
|
if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
|
|
continue;
|
|
|
|
/*
|
|
* policy->max is the maximum allowed frequency defined by user
|
|
* and clipped_freq is the maximum that thermal constraints
|
|
* allow.
|
|
*
|
|
* If clipped_freq is lower than policy->max, then we need to
|
|
* readjust policy->max.
|
|
*
|
|
* But, if clipped_freq is greater than policy->max, we don't
|
|
* need to do anything.
|
|
*/
|
|
clipped_freq = cpufreq_dev->clipped_freq;
|
|
|
|
if (policy->max > clipped_freq) {
|
|
cpufreq_verify_within_limits(policy, 0, clipped_freq);
|
|
exynos_ss_thermal(NULL, 0, cpufreq_dev->cool_dev->type, clipped_freq);
|
|
pr_info("%s: type: %s, freq: %lu\n", __func__,
|
|
cpufreq_dev->cool_dev->type, clipped_freq);
|
|
}
|
|
break;
|
|
}
|
|
mutex_unlock(&cooling_list_lock);
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/**
|
|
* build_dyn_power_table() - create a dynamic power to frequency table
|
|
* @cpufreq_device: the cpufreq cooling device in which to store the table
|
|
* @capacitance: dynamic power coefficient for these cpus
|
|
*
|
|
* Build a dynamic power to frequency table for this cpu and store it
|
|
* in @cpufreq_device. This table will be used in cpu_power_to_freq() and
|
|
* cpu_freq_to_power() to convert between power and frequency
|
|
* efficiently. Power is stored in mW, frequency in KHz. The
|
|
* resulting table is in ascending order.
|
|
*
|
|
* Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
|
|
* -ENOMEM if we run out of memory or -EAGAIN if an OPP was
|
|
* added/enabled while the function was executing.
|
|
*/
|
|
static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
|
|
u32 capacitance)
|
|
{
|
|
struct power_table *power_table;
|
|
struct dev_pm_opp *opp;
|
|
struct device *dev = NULL;
|
|
int num_opps = 0, cpu, i, ret = 0;
|
|
unsigned long freq;
|
|
|
|
for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
|
|
dev = get_cpu_device(cpu);
|
|
if (!dev) {
|
|
dev_warn(&cpufreq_device->cool_dev->device,
|
|
"No cpu device for cpu %d\n", cpu);
|
|
continue;
|
|
}
|
|
|
|
num_opps = dev_pm_opp_get_opp_count(dev);
|
|
if (num_opps > 0)
|
|
break;
|
|
else if (num_opps < 0)
|
|
return num_opps;
|
|
}
|
|
|
|
if (num_opps == 0)
|
|
return -EINVAL;
|
|
|
|
power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
|
|
if (!power_table)
|
|
return -ENOMEM;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (freq = 0, i = 0;
|
|
opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
|
|
freq++, i++) {
|
|
u32 freq_mhz, voltage_mv;
|
|
u64 power;
|
|
|
|
if (i >= num_opps) {
|
|
rcu_read_unlock();
|
|
ret = -EAGAIN;
|
|
goto free_power_table;
|
|
}
|
|
|
|
freq_mhz = freq / 1000000;
|
|
voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
|
|
|
|
/*
|
|
* Do the multiplication with MHz and millivolt so as
|
|
* to not overflow.
|
|
*/
|
|
power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
|
|
do_div(power, 1000000000);
|
|
|
|
/* frequency is stored in power_table in KHz */
|
|
power_table[i].frequency = freq / 1000;
|
|
|
|
/* power is stored in mW */
|
|
power_table[i].power = power;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (i != num_opps) {
|
|
ret = PTR_ERR(opp);
|
|
goto free_power_table;
|
|
}
|
|
|
|
cpufreq_device->cpu_dev = dev;
|
|
cpufreq_device->dyn_power_table = power_table;
|
|
cpufreq_device->dyn_power_table_entries = i;
|
|
|
|
return 0;
|
|
|
|
free_power_table:
|
|
kfree(power_table);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int build_static_power_table(struct cpufreq_cooling_device *cpufreq_device)
|
|
{
|
|
int i, j;
|
|
int ratio = cal_asv_get_ids_info(ACPM_DVFS_CPUCL0);
|
|
int asv_group = cal_asv_get_grp(ACPM_DVFS_CPUCL0);
|
|
void *gen_block;
|
|
struct ect_gen_param_table *volt_temp_param, *asv_param;
|
|
int ratio_table[16] = { 0, 18, 22, 27, 33, 40, 49, 60, 73, 89, 108, 131, 159, 194, 232, 250};
|
|
|
|
if (asv_group < 0 || asv_group > 15)
|
|
asv_group = 0;
|
|
|
|
if (!ratio)
|
|
ratio = ratio_table[asv_group];
|
|
|
|
gen_block = ect_get_block("GEN");
|
|
if (gen_block == NULL) {
|
|
pr_err("%s: Failed to get gen block from ECT\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
volt_temp_param = ect_gen_param_get_table(gen_block, "DTM_MNGS_VOLT_TEMP");
|
|
asv_param = ect_gen_param_get_table(gen_block, "DTM_MNGS_ASV");
|
|
|
|
if (volt_temp_param && asv_param) {
|
|
cpufreq_device->var_volt_size = volt_temp_param->num_of_row - 1;
|
|
cpufreq_device->var_temp_size = volt_temp_param->num_of_col - 1;
|
|
|
|
cpufreq_device->var_coeff = kzalloc(sizeof(int) *
|
|
volt_temp_param->num_of_row *
|
|
volt_temp_param->num_of_col,
|
|
GFP_KERNEL);
|
|
if (!cpufreq_device->var_coeff)
|
|
goto err_mem;
|
|
|
|
cpufreq_device->asv_coeff = kzalloc(sizeof(int) *
|
|
asv_param->num_of_row *
|
|
asv_param->num_of_col,
|
|
GFP_KERNEL);
|
|
if (!cpufreq_device->asv_coeff)
|
|
goto free_var_coeff;
|
|
|
|
cpufreq_device->var_table = kzalloc(sizeof(int) *
|
|
volt_temp_param->num_of_row *
|
|
volt_temp_param->num_of_col,
|
|
GFP_KERNEL);
|
|
if (!cpufreq_device->var_table)
|
|
goto free_asv_coeff;
|
|
|
|
memcpy(cpufreq_device->var_coeff, volt_temp_param->parameter,
|
|
sizeof(int) * volt_temp_param->num_of_row * volt_temp_param->num_of_col);
|
|
memcpy(cpufreq_device->asv_coeff, asv_param->parameter,
|
|
sizeof(int) * asv_param->num_of_row * asv_param->num_of_col);
|
|
memcpy(cpufreq_device->var_table, volt_temp_param->parameter,
|
|
sizeof(int) * volt_temp_param->num_of_row * volt_temp_param->num_of_col);
|
|
} else {
|
|
pr_err("%s: Failed to get param table from ECT\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 1; i <= cpufreq_device->var_volt_size; i++) {
|
|
long asv_coeff = (long)cpufreq_device->asv_coeff[3 * i + 0] * asv_group * asv_group
|
|
+ (long)cpufreq_device->asv_coeff[3 * i + 1] * asv_group
|
|
+ (long)cpufreq_device->asv_coeff[3 * i + 2];
|
|
asv_coeff = asv_coeff / 100;
|
|
|
|
for (j = 1; j <= cpufreq_device->var_temp_size; j++) {
|
|
long var_coeff = (long)cpufreq_device->var_coeff[i * (cpufreq_device->var_temp_size + 1) + j];
|
|
var_coeff = ratio * var_coeff * asv_coeff;
|
|
var_coeff = var_coeff / 100000;
|
|
cpufreq_device->var_table[i * (cpufreq_device->var_temp_size + 1) + j] = (int)var_coeff;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_asv_coeff:
|
|
kfree(cpufreq_device->asv_coeff);
|
|
free_var_coeff:
|
|
kfree(cpufreq_device->var_coeff);
|
|
err_mem:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int lookup_static_power(struct cpufreq_cooling_device *cpufreq_device,
|
|
unsigned long voltage, int temperature, u32 *power)
|
|
{
|
|
int volt_index = 0, temp_index = 0;
|
|
int index = 0;
|
|
int num_cpus;
|
|
int max_cpus;
|
|
struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
|
|
cpumask_t tempmask;
|
|
|
|
cpumask_and(&tempmask, cpumask, cpu_online_mask);
|
|
max_cpus = cpumask_weight(cpumask);
|
|
num_cpus = cpumask_weight(&tempmask);
|
|
voltage = voltage / 1000;
|
|
temperature = temperature / 1000;
|
|
|
|
for (volt_index = 0; volt_index <= cpufreq_device->var_volt_size; volt_index++) {
|
|
if (voltage < cpufreq_device->var_table[volt_index * (cpufreq_device->var_temp_size + 1)]) {
|
|
volt_index = volt_index - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (volt_index == 0)
|
|
volt_index = 1;
|
|
|
|
if (volt_index > cpufreq_device->var_volt_size)
|
|
volt_index = cpufreq_device->var_volt_size;
|
|
|
|
for (temp_index = 0; temp_index <= cpufreq_device->var_temp_size; temp_index++) {
|
|
if (temperature < cpufreq_device->var_table[temp_index]) {
|
|
temp_index = temp_index - 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (temp_index == 0)
|
|
temp_index = 1;
|
|
|
|
if (temp_index > cpufreq_device->var_temp_size)
|
|
temp_index = cpufreq_device->var_temp_size;
|
|
|
|
index = (int)(volt_index * (cpufreq_device->var_temp_size + 1) + temp_index);
|
|
*power = (unsigned int)cpufreq_device->var_table[index] * num_cpus / max_cpus;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
|
|
u32 freq)
|
|
{
|
|
int i;
|
|
struct power_table *pt = cpufreq_device->dyn_power_table;
|
|
|
|
for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
|
|
if (freq < pt[i].frequency)
|
|
break;
|
|
|
|
return pt[i - 1].power;
|
|
}
|
|
|
|
static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
|
|
u32 power)
|
|
{
|
|
int i;
|
|
struct power_table *pt = cpufreq_device->dyn_power_table;
|
|
|
|
for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
|
|
if (power < pt[i].power)
|
|
break;
|
|
|
|
return pt[i - 1].frequency;
|
|
}
|
|
|
|
/**
|
|
* get_load() - get load for a cpu since last updated
|
|
* @cpufreq_device: &struct cpufreq_cooling_device for this cpu
|
|
* @cpu: cpu number
|
|
* @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
|
|
*
|
|
* Return: The average load of cpu @cpu in percentage since this
|
|
* function was last called.
|
|
*/
|
|
static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
|
|
int cpu_idx)
|
|
{
|
|
u32 load;
|
|
u64 now, now_idle, delta_time, delta_idle;
|
|
|
|
now_idle = get_cpu_idle_time(cpu, &now, 0);
|
|
delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
|
|
delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
|
|
|
|
if (delta_time <= delta_idle)
|
|
load = 0;
|
|
else
|
|
load = div64_u64(100 * (delta_time - delta_idle), delta_time);
|
|
|
|
cpufreq_device->time_in_idle[cpu_idx] = now_idle;
|
|
cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
|
|
|
|
return load;
|
|
}
|
|
|
|
/**
|
|
* get_static_power() - calculate the static power consumed by the cpus
|
|
* @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
|
|
* @tz: thermal zone device in which we're operating
|
|
* @freq: frequency in KHz
|
|
* @power: pointer in which to store the calculated static power
|
|
*
|
|
* Calculate the static power consumed by the cpus described by
|
|
* @cpu_actor running at frequency @freq. This function relies on a
|
|
* platform specific function that should have been provided when the
|
|
* actor was registered. If it wasn't, the static power is assumed to
|
|
* be negligible. The calculated static power is stored in @power.
|
|
*
|
|
* Return: 0 on success, -E* on failure.
|
|
*/
|
|
static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
|
|
struct thermal_zone_device *tz, unsigned long freq,
|
|
u32 *power)
|
|
{
|
|
struct dev_pm_opp *opp;
|
|
unsigned long voltage;
|
|
unsigned long freq_hz = freq * 1000;
|
|
|
|
if (!cpufreq_device->cpu_dev) {
|
|
*power = 0;
|
|
return 0;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
|
|
true);
|
|
voltage = dev_pm_opp_get_voltage(opp);
|
|
|
|
rcu_read_unlock();
|
|
|
|
if (voltage == 0) {
|
|
dev_warn_ratelimited(cpufreq_device->cpu_dev,
|
|
"Failed to get voltage for frequency %lu: %ld\n",
|
|
freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return lookup_static_power(cpufreq_device, voltage, tz->temperature, power);
|
|
}
|
|
|
|
/**
|
|
* get_dynamic_power() - calculate the dynamic power
|
|
* @cpufreq_device: &cpufreq_cooling_device for this cdev
|
|
* @freq: current frequency
|
|
*
|
|
* Return: the dynamic power consumed by the cpus described by
|
|
* @cpufreq_device.
|
|
*/
|
|
static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
|
|
unsigned long freq)
|
|
{
|
|
u32 raw_cpu_power;
|
|
|
|
raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
|
|
return (raw_cpu_power * cpufreq_device->last_load) / 100;
|
|
}
|
|
|
|
/* cpufreq cooling device callback functions are defined below */
|
|
|
|
/**
|
|
* cpufreq_get_max_state - callback function to get the max cooling state.
|
|
* @cdev: thermal cooling device pointer.
|
|
* @state: fill this variable with the max cooling state.
|
|
*
|
|
* Callback for the thermal cooling device to return the cpufreq
|
|
* max cooling state.
|
|
*
|
|
* Return: 0 on success, an error code otherwise.
|
|
*/
|
|
static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
|
|
unsigned long *state)
|
|
{
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
|
|
*state = cpufreq_device->max_level;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_get_cur_state - callback function to get the current cooling state.
|
|
* @cdev: thermal cooling device pointer.
|
|
* @state: fill this variable with the current cooling state.
|
|
*
|
|
* Callback for the thermal cooling device to return the cpufreq
|
|
* current cooling state.
|
|
*
|
|
* Return: 0 on success, an error code otherwise.
|
|
*/
|
|
static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
|
|
unsigned long *state)
|
|
{
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
|
|
*state = cpufreq_device->cpufreq_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_set_cur_state - callback function to set the current cooling state.
|
|
* @cdev: thermal cooling device pointer.
|
|
* @state: set this variable to the current cooling state.
|
|
*
|
|
* Callback for the thermal cooling device to change the cpufreq
|
|
* current cooling state.
|
|
*
|
|
* Return: 0 on success, an error code otherwise.
|
|
*/
|
|
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
|
|
static u64 last_time[THERMAL_ZONE_MAX], curr_time[THERMAL_ZONE_MAX];
|
|
extern struct thermal_data_devices thermal_data_info[THERMAL_ZONE_MAX];
|
|
#endif
|
|
|
|
static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
|
|
unsigned long state)
|
|
{
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
|
|
unsigned int clip_freq;
|
|
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
|
|
int tid = cdev->id;
|
|
#endif
|
|
|
|
/* Request state should be less than max_level */
|
|
if (WARN_ON(state > cpufreq_device->max_level))
|
|
return -EINVAL;
|
|
|
|
/* Check if the old cooling action is same as new cooling action */
|
|
if (cpufreq_device->cpufreq_state == state)
|
|
return 0;
|
|
|
|
clip_freq = cpufreq_device->freq_table[state];
|
|
cpufreq_device->cpufreq_state = state;
|
|
cpufreq_device->clipped_freq = clip_freq;
|
|
|
|
#if defined(CONFIG_SEC_DEBUG_HW_PARAM)
|
|
curr_time[tid] = ktime_to_ns(ktime_get()) / 1000000;
|
|
if (last_time[tid]) {
|
|
thermal_data_info[tid].freq_level[state] +=
|
|
curr_time[tid] - last_time[tid];
|
|
}
|
|
last_time[tid] = curr_time[tid];
|
|
thermal_data_info[tid].max_level = cpufreq_device->max_level;
|
|
#endif
|
|
|
|
cpufreq_update_policy(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_get_requested_power() - get the current power
|
|
* @cdev: &thermal_cooling_device pointer
|
|
* @tz: a valid thermal zone device pointer
|
|
* @power: pointer in which to store the resulting power
|
|
*
|
|
* Calculate the current power consumption of the cpus in milliwatts
|
|
* and store it in @power. This function should actually calculate
|
|
* the requested power, but it's hard to get the frequency that
|
|
* cpufreq would have assigned if there were no thermal limits.
|
|
* Instead, we calculate the current power on the assumption that the
|
|
* immediate future will look like the immediate past.
|
|
*
|
|
* We use the current frequency and the average load since this
|
|
* function was last called. In reality, there could have been
|
|
* multiple opps since this function was last called and that affects
|
|
* the load calculation. While it's not perfectly accurate, this
|
|
* simplification is good enough and works. REVISIT this, as more
|
|
* complex code may be needed if experiments show that it's not
|
|
* accurate enough.
|
|
*
|
|
* Return: 0 on success, -E* if getting the static power failed.
|
|
*/
|
|
static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
|
|
struct thermal_zone_device *tz,
|
|
u32 *power)
|
|
{
|
|
unsigned long freq;
|
|
int i = 0, cpu, ret;
|
|
u32 static_power, dynamic_power, total_load = 0;
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
u32 *load_cpu = NULL;
|
|
|
|
cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
|
|
|
|
/*
|
|
* All the CPUs are offline, thus the requested power by
|
|
* the cdev is 0
|
|
*/
|
|
if (cpu >= nr_cpu_ids) {
|
|
*power = 0;
|
|
return 0;
|
|
}
|
|
|
|
freq = cpufreq_quick_get(cpu);
|
|
|
|
if (freq == 0) {
|
|
*power = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (trace_thermal_power_cpu_get_power_enabled()) {
|
|
u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
|
|
|
|
load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
|
|
}
|
|
|
|
for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
|
|
u32 load;
|
|
|
|
if (cpu_online(cpu))
|
|
load = get_load(cpufreq_device, cpu, i);
|
|
else
|
|
load = 0;
|
|
|
|
total_load += load;
|
|
if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
|
|
load_cpu[i] = load;
|
|
|
|
i++;
|
|
}
|
|
|
|
cpufreq_device->last_load = total_load;
|
|
|
|
dynamic_power = get_dynamic_power(cpufreq_device, freq);
|
|
ret = get_static_power(cpufreq_device, tz, freq, &static_power);
|
|
if (ret) {
|
|
kfree(load_cpu);
|
|
return ret;
|
|
}
|
|
|
|
if (load_cpu) {
|
|
trace_thermal_power_cpu_get_power(
|
|
&cpufreq_device->allowed_cpus,
|
|
freq, load_cpu, i, dynamic_power, static_power);
|
|
|
|
kfree(load_cpu);
|
|
}
|
|
|
|
*power = static_power + dynamic_power;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_state2power() - convert a cpu cdev state to power consumed
|
|
* @cdev: &thermal_cooling_device pointer
|
|
* @tz: a valid thermal zone device pointer
|
|
* @state: cooling device state to be converted
|
|
* @power: pointer in which to store the resulting power
|
|
*
|
|
* Convert cooling device state @state into power consumption in
|
|
* milliwatts assuming 100% load. Store the calculated power in
|
|
* @power.
|
|
*
|
|
* Return: 0 on success, -EINVAL if the cooling device state could not
|
|
* be converted into a frequency or other -E* if there was an error
|
|
* when calculating the static power.
|
|
*/
|
|
static int cpufreq_state2power(struct thermal_cooling_device *cdev,
|
|
struct thermal_zone_device *tz,
|
|
unsigned long state, u32 *power)
|
|
{
|
|
unsigned int freq, num_cpus;
|
|
cpumask_t cpumask;
|
|
u32 static_power, dynamic_power;
|
|
int ret;
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
|
|
cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
|
|
num_cpus = cpumask_weight(&cpumask);
|
|
|
|
/* None of our cpus are online, so no power */
|
|
if (num_cpus == 0) {
|
|
*power = 0;
|
|
return 0;
|
|
}
|
|
|
|
freq = cpufreq_device->freq_table[state];
|
|
if (!freq)
|
|
return -EINVAL;
|
|
|
|
dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
|
|
ret = get_static_power(cpufreq_device, tz, freq, &static_power);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*power = static_power + dynamic_power;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_power2state() - convert power to a cooling device state
|
|
* @cdev: &thermal_cooling_device pointer
|
|
* @tz: a valid thermal zone device pointer
|
|
* @power: power in milliwatts to be converted
|
|
* @state: pointer in which to store the resulting state
|
|
*
|
|
* Calculate a cooling device state for the cpus described by @cdev
|
|
* that would allow them to consume at most @power mW and store it in
|
|
* @state. Note that this calculation depends on external factors
|
|
* such as the cpu load or the current static power. Calling this
|
|
* function with the same power as input can yield different cooling
|
|
* device states depending on those external factors.
|
|
*
|
|
* Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
|
|
* the calculated frequency could not be converted to a valid state.
|
|
* The latter should not happen unless the frequencies available to
|
|
* cpufreq have changed since the initialization of the cpu cooling
|
|
* device.
|
|
*/
|
|
static int cpufreq_power2state(struct thermal_cooling_device *cdev,
|
|
struct thermal_zone_device *tz, u32 power,
|
|
unsigned long *state)
|
|
{
|
|
unsigned int cpu, cur_freq, target_freq;
|
|
int ret;
|
|
s32 dyn_power;
|
|
u32 normalised_power, static_power;
|
|
struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
|
|
cpumask_t tempmask;
|
|
int num_cpus;
|
|
|
|
cpumask_and(&tempmask, &cpufreq_device->allowed_cpus, &cpufreq_device->target_cpus);
|
|
num_cpus = cpumask_weight(&tempmask);
|
|
|
|
cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
|
|
|
|
/* None of our cpus are online */
|
|
if (cpu >= nr_cpu_ids)
|
|
return -ENODEV;
|
|
|
|
cur_freq = cpufreq_quick_get(cpu);
|
|
ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dyn_power = power - static_power;
|
|
dyn_power = dyn_power > 0 ? dyn_power : 0;
|
|
normalised_power = dyn_power / num_cpus;
|
|
target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
|
|
|
|
*state = cpufreq_cooling_get_level(cpu, target_freq);
|
|
if (*state == THERMAL_CSTATE_INVALID) {
|
|
dev_warn_ratelimited(&cdev->device,
|
|
"Failed to convert %dKHz for cpu %d into a cdev state\n",
|
|
target_freq, cpu);
|
|
return -EINVAL;
|
|
}
|
|
|
|
trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
|
|
target_freq, *state, power);
|
|
return 0;
|
|
}
|
|
|
|
static int cpufreq_set_cur_temp(struct thermal_cooling_device *cdev,
|
|
bool suspended, int temp)
|
|
{
|
|
enum tmu_noti_state_t tstate;
|
|
unsigned int on;
|
|
|
|
if (suspended || temp < EXYNOS_COLD_TEMP) {
|
|
tstate = TMU_COLD;
|
|
on = 1;
|
|
} else {
|
|
tstate = TMU_NORMAL;
|
|
on = 0;
|
|
}
|
|
|
|
if (cpu_tstate == tstate)
|
|
return 0;
|
|
|
|
cpu_tstate = tstate;
|
|
|
|
blocking_notifier_call_chain(&cpu_notifier, TMU_COLD, &on);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Bind cpufreq callbacks to thermal cooling device ops */
|
|
static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
|
|
.get_max_state = cpufreq_get_max_state,
|
|
.get_cur_state = cpufreq_get_cur_state,
|
|
.set_cur_state = cpufreq_set_cur_state,
|
|
};
|
|
|
|
/* Notifier for cpufreq policy change */
|
|
static struct notifier_block thermal_cpufreq_notifier_block = {
|
|
.notifier_call = cpufreq_thermal_notifier,
|
|
};
|
|
|
|
int exynos_tmu_add_notifier(struct notifier_block *n)
|
|
{
|
|
return blocking_notifier_chain_register(&cpu_notifier, n);
|
|
}
|
|
|
|
static unsigned int find_next_max(struct cpufreq_frequency_table *table,
|
|
unsigned int prev_max)
|
|
{
|
|
struct cpufreq_frequency_table *pos;
|
|
unsigned int max = 0;
|
|
|
|
cpufreq_for_each_valid_entry(pos, table) {
|
|
if (pos->frequency > max && pos->frequency < prev_max)
|
|
max = pos->frequency;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
/**
|
|
* __cpufreq_cooling_register - helper function to create cpufreq cooling device
|
|
* @np: a valid struct device_node to the cooling device device tree node
|
|
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
|
|
* Normally this should be same as cpufreq policy->related_cpus.
|
|
* @capacitance: dynamic power coefficient for these cpus
|
|
* @plat_static_func: function to calculate the static power consumed by these
|
|
* cpus (optional)
|
|
*
|
|
* This interface function registers the cpufreq cooling device with the name
|
|
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
|
|
* cooling devices. It also gives the opportunity to link the cooling device
|
|
* with a device tree node, in order to bind it via the thermal DT code.
|
|
*
|
|
* Return: a valid struct thermal_cooling_device pointer on success,
|
|
* on failure, it returns a corresponding ERR_PTR().
|
|
*/
|
|
static struct thermal_cooling_device *
|
|
__cpufreq_cooling_register(struct device_node *np,
|
|
const struct cpumask *clip_cpus, u32 capacitance,
|
|
get_static_t plat_static_func)
|
|
{
|
|
struct thermal_cooling_device *cool_dev;
|
|
struct cpufreq_cooling_device *cpufreq_dev;
|
|
char dev_name[THERMAL_NAME_LENGTH];
|
|
struct cpufreq_frequency_table *pos, *table;
|
|
unsigned int freq, i, num_cpus;
|
|
int ret;
|
|
|
|
table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
|
|
if (!table) {
|
|
pr_debug("%s: CPUFreq table not found\n", __func__);
|
|
return ERR_PTR(-EPROBE_DEFER);
|
|
}
|
|
|
|
cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
|
|
if (!cpufreq_dev)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
num_cpus = cpumask_weight(clip_cpus);
|
|
cpufreq_dev->time_in_idle = kcalloc(num_cpus,
|
|
sizeof(*cpufreq_dev->time_in_idle),
|
|
GFP_KERNEL);
|
|
if (!cpufreq_dev->time_in_idle) {
|
|
cool_dev = ERR_PTR(-ENOMEM);
|
|
goto free_cdev;
|
|
}
|
|
|
|
cpufreq_dev->time_in_idle_timestamp =
|
|
kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
|
|
GFP_KERNEL);
|
|
if (!cpufreq_dev->time_in_idle_timestamp) {
|
|
cool_dev = ERR_PTR(-ENOMEM);
|
|
goto free_time_in_idle;
|
|
}
|
|
|
|
/* Find max levels */
|
|
cpufreq_for_each_valid_entry(pos, table)
|
|
cpufreq_dev->max_level++;
|
|
|
|
cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
|
|
cpufreq_dev->max_level, GFP_KERNEL);
|
|
if (!cpufreq_dev->freq_table) {
|
|
cool_dev = ERR_PTR(-ENOMEM);
|
|
goto free_time_in_idle_timestamp;
|
|
}
|
|
|
|
/* max_level is an index, not a counter */
|
|
cpufreq_dev->max_level--;
|
|
|
|
cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
|
|
cpumask_copy(&cpufreq_dev->target_cpus, clip_cpus);
|
|
|
|
if (capacitance) {
|
|
cpufreq_cooling_ops.get_requested_power =
|
|
cpufreq_get_requested_power;
|
|
cpufreq_cooling_ops.state2power = cpufreq_state2power;
|
|
cpufreq_cooling_ops.power2state = cpufreq_power2state;
|
|
|
|
ret = build_dyn_power_table(cpufreq_dev, capacitance);
|
|
if (ret) {
|
|
cool_dev = ERR_PTR(ret);
|
|
goto free_table;
|
|
}
|
|
|
|
ret = build_static_power_table(cpufreq_dev);
|
|
if (ret) {
|
|
cool_dev = ERR_PTR(ret);
|
|
goto free_table;
|
|
}
|
|
}
|
|
|
|
ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
|
|
if (ret) {
|
|
cool_dev = ERR_PTR(ret);
|
|
goto free_power_table;
|
|
}
|
|
|
|
/* Fill freq-table in descending order of frequencies */
|
|
for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
|
|
freq = find_next_max(table, freq);
|
|
cpufreq_dev->freq_table[i] = freq;
|
|
|
|
/* Warn for duplicate entries */
|
|
if (!freq)
|
|
pr_warn("%s: table has duplicate entries\n", __func__);
|
|
else
|
|
pr_debug("%s: freq:%u KHz\n", __func__, freq);
|
|
}
|
|
|
|
if (cpufreq_dev->id == 0)
|
|
cpufreq_cooling_ops.set_cur_temp = cpufreq_set_cur_temp;
|
|
|
|
snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
|
|
cpufreq_dev->id);
|
|
|
|
cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
|
|
&cpufreq_cooling_ops);
|
|
if (IS_ERR(cool_dev))
|
|
goto remove_idr;
|
|
|
|
cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
|
|
cpufreq_dev->cool_dev = cool_dev;
|
|
|
|
mutex_lock(&cooling_cpufreq_lock);
|
|
|
|
mutex_lock(&cooling_list_lock);
|
|
list_add(&cpufreq_dev->node, &cpufreq_dev_list);
|
|
mutex_unlock(&cooling_list_lock);
|
|
|
|
/* Register the notifier for first cpufreq cooling device */
|
|
if (!cpufreq_dev_count++)
|
|
cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
mutex_unlock(&cooling_cpufreq_lock);
|
|
|
|
return cool_dev;
|
|
|
|
remove_idr:
|
|
release_idr(&cpufreq_idr, cpufreq_dev->id);
|
|
free_power_table:
|
|
kfree(cpufreq_dev->dyn_power_table);
|
|
free_table:
|
|
kfree(cpufreq_dev->freq_table);
|
|
free_time_in_idle_timestamp:
|
|
kfree(cpufreq_dev->time_in_idle_timestamp);
|
|
free_time_in_idle:
|
|
kfree(cpufreq_dev->time_in_idle);
|
|
free_cdev:
|
|
kfree(cpufreq_dev);
|
|
|
|
return cool_dev;
|
|
}
|
|
|
|
/**
|
|
* cpufreq_cooling_register - function to create cpufreq cooling device.
|
|
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
|
|
*
|
|
* This interface function registers the cpufreq cooling device with the name
|
|
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
|
|
* cooling devices.
|
|
*
|
|
* Return: a valid struct thermal_cooling_device pointer on success,
|
|
* on failure, it returns a corresponding ERR_PTR().
|
|
*/
|
|
struct thermal_cooling_device *
|
|
cpufreq_cooling_register(const struct cpumask *clip_cpus)
|
|
{
|
|
return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
|
|
|
|
/**
|
|
* of_cpufreq_cooling_register - function to create cpufreq cooling device.
|
|
* @np: a valid struct device_node to the cooling device device tree node
|
|
* @clip_cpus: cpumask of cpus where the frequency constraints will happen.
|
|
*
|
|
* This interface function registers the cpufreq cooling device with the name
|
|
* "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
|
|
* cooling devices. Using this API, the cpufreq cooling device will be
|
|
* linked to the device tree node provided.
|
|
*
|
|
* Return: a valid struct thermal_cooling_device pointer on success,
|
|
* on failure, it returns a corresponding ERR_PTR().
|
|
*/
|
|
struct thermal_cooling_device *
|
|
of_cpufreq_cooling_register(struct device_node *np,
|
|
const struct cpumask *clip_cpus)
|
|
{
|
|
if (!np)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
|
|
|
|
/**
|
|
* cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
|
|
* @clip_cpus: cpumask of cpus where the frequency constraints will happen
|
|
* @capacitance: dynamic power coefficient for these cpus
|
|
* @plat_static_func: function to calculate the static power consumed by these
|
|
* cpus (optional)
|
|
*
|
|
* This interface function registers the cpufreq cooling device with
|
|
* the name "thermal-cpufreq-%x". This api can support multiple
|
|
* instances of cpufreq cooling devices. Using this function, the
|
|
* cooling device will implement the power extensions by using a
|
|
* simple cpu power model. The cpus must have registered their OPPs
|
|
* using the OPP library.
|
|
*
|
|
* An optional @plat_static_func may be provided to calculate the
|
|
* static power consumed by these cpus. If the platform's static
|
|
* power consumption is unknown or negligible, make it NULL.
|
|
*
|
|
* Return: a valid struct thermal_cooling_device pointer on success,
|
|
* on failure, it returns a corresponding ERR_PTR().
|
|
*/
|
|
struct thermal_cooling_device *
|
|
cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
|
|
get_static_t plat_static_func)
|
|
{
|
|
return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
|
|
plat_static_func);
|
|
}
|
|
EXPORT_SYMBOL(cpufreq_power_cooling_register);
|
|
|
|
/**
|
|
* of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
|
|
* @np: a valid struct device_node to the cooling device device tree node
|
|
* @clip_cpus: cpumask of cpus where the frequency constraints will happen
|
|
* @capacitance: dynamic power coefficient for these cpus
|
|
* @plat_static_func: function to calculate the static power consumed by these
|
|
* cpus (optional)
|
|
*
|
|
* This interface function registers the cpufreq cooling device with
|
|
* the name "thermal-cpufreq-%x". This api can support multiple
|
|
* instances of cpufreq cooling devices. Using this API, the cpufreq
|
|
* cooling device will be linked to the device tree node provided.
|
|
* Using this function, the cooling device will implement the power
|
|
* extensions by using a simple cpu power model. The cpus must have
|
|
* registered their OPPs using the OPP library.
|
|
*
|
|
* An optional @plat_static_func may be provided to calculate the
|
|
* static power consumed by these cpus. If the platform's static
|
|
* power consumption is unknown or negligible, make it NULL.
|
|
*
|
|
* Return: a valid struct thermal_cooling_device pointer on success,
|
|
* on failure, it returns a corresponding ERR_PTR().
|
|
*/
|
|
struct thermal_cooling_device *
|
|
of_cpufreq_power_cooling_register(struct device_node *np,
|
|
const struct cpumask *clip_cpus,
|
|
u32 capacitance,
|
|
get_static_t plat_static_func)
|
|
{
|
|
if (!np)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return __cpufreq_cooling_register(np, clip_cpus, capacitance,
|
|
plat_static_func);
|
|
}
|
|
EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
|
|
|
|
/**
|
|
* cpufreq_cooling_unregister - function to remove cpufreq cooling device.
|
|
* @cdev: thermal cooling device pointer.
|
|
*
|
|
* This interface function unregisters the "thermal-cpufreq-%x" cooling device.
|
|
*/
|
|
void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
|
|
{
|
|
struct cpufreq_cooling_device *cpufreq_dev;
|
|
|
|
if (!cdev)
|
|
return;
|
|
|
|
cpufreq_dev = cdev->devdata;
|
|
|
|
/* Unregister the notifier for the last cpufreq cooling device */
|
|
mutex_lock(&cooling_cpufreq_lock);
|
|
if (!--cpufreq_dev_count)
|
|
cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
|
|
mutex_lock(&cooling_list_lock);
|
|
list_del(&cpufreq_dev->node);
|
|
mutex_unlock(&cooling_list_lock);
|
|
|
|
mutex_unlock(&cooling_cpufreq_lock);
|
|
|
|
thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
|
|
release_idr(&cpufreq_idr, cpufreq_dev->id);
|
|
kfree(cpufreq_dev->dyn_power_table);
|
|
kfree(cpufreq_dev->time_in_idle_timestamp);
|
|
kfree(cpufreq_dev->time_in_idle);
|
|
kfree(cpufreq_dev->freq_table);
|
|
kfree(cpufreq_dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
|