android_kernel_samsung_univ.../include/linux/memcontrol.h
Michal Hocko a5b7c87f92 vmscan, memcg: do softlimit reclaim also for targeted reclaim
Soft reclaim has been done only for the global reclaim (both background
and direct).  Since "memcg: integrate soft reclaim tighter with zone
shrinking code" there is no reason for this limitation anymore as the soft
limit reclaim doesn't use any special code paths and it is a part of the
zone shrinking code which is used by both global and targeted reclaims.

From the semantic point of view it is natural to consider soft limit
before touching all groups in the hierarchy tree which is touching the
hard limit because soft limit tells us where to push back when there is a
memory pressure.  It is not important whether the pressure comes from the
limit or imbalanced zones.

This patch simply enables soft reclaim unconditionally in
mem_cgroup_should_soft_reclaim so it is enabled for both global and
targeted reclaim paths.  mem_cgroup_soft_reclaim_eligible needs to learn
about the root of the reclaim to know where to stop checking soft limit
state of parents up the hierarchy.  Say we have

A (over soft limit)
 \
  B (below s.l., hit the hard limit)
 / \
C   D (below s.l.)

B is the source of the outside memory pressure now for D but we shouldn't
soft reclaim it because it is behaving well under B subtree and we can
still reclaim from C (pressumably it is over the limit).
mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
hierarchy at B (root of the memory pressure).

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 15:38:00 -07:00

620 lines
17 KiB
C

/* memcontrol.h - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
#include <linux/cgroup.h>
#include <linux/vm_event_item.h>
#include <linux/hardirq.h>
#include <linux/jump_label.h>
struct mem_cgroup;
struct page_cgroup;
struct page;
struct mm_struct;
struct kmem_cache;
/* Stats that can be updated by kernel. */
enum mem_cgroup_page_stat_item {
MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
};
struct mem_cgroup_reclaim_cookie {
struct zone *zone;
int priority;
unsigned int generation;
};
#ifdef CONFIG_MEMCG
/*
* All "charge" functions with gfp_mask should use GFP_KERNEL or
* (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
* alloc memory but reclaims memory from all available zones. So, "where I want
* memory from" bits of gfp_mask has no meaning. So any bits of that field is
* available but adding a rule is better. charge functions' gfp_mask should
* be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
* codes.
* (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
*/
extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask);
/* for swap handling */
extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
extern void mem_cgroup_commit_charge_swapin(struct page *page,
struct mem_cgroup *memcg);
extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask);
struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
/* For coalescing uncharge for reducing memcg' overhead*/
extern void mem_cgroup_uncharge_start(void);
extern void mem_cgroup_uncharge_end(void);
extern void mem_cgroup_uncharge_page(struct page *page);
extern void mem_cgroup_uncharge_cache_page(struct page *page);
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
struct mem_cgroup *memcg);
bool task_in_mem_cgroup(struct task_struct *task,
const struct mem_cgroup *memcg);
extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
static inline
bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
{
struct mem_cgroup *task_memcg;
bool match;
rcu_read_lock();
task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
rcu_read_unlock();
return match;
}
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
extern void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
struct mem_cgroup **memcgp);
extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok);
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
/*
* For memory reclaim.
*/
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
struct task_struct *p);
extern void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage);
#ifdef CONFIG_MEMCG_SWAP
extern int do_swap_account;
#endif
static inline bool mem_cgroup_disabled(void)
{
if (mem_cgroup_subsys.disabled)
return true;
return false;
}
void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
unsigned long *flags);
extern atomic_t memcg_moving;
static inline void mem_cgroup_begin_update_page_stat(struct page *page,
bool *locked, unsigned long *flags)
{
if (mem_cgroup_disabled())
return;
rcu_read_lock();
*locked = false;
if (atomic_read(&memcg_moving))
__mem_cgroup_begin_update_page_stat(page, locked, flags);
}
void __mem_cgroup_end_update_page_stat(struct page *page,
unsigned long *flags);
static inline void mem_cgroup_end_update_page_stat(struct page *page,
bool *locked, unsigned long *flags)
{
if (mem_cgroup_disabled())
return;
if (*locked)
__mem_cgroup_end_update_page_stat(page, flags);
rcu_read_unlock();
}
void mem_cgroup_update_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx,
int val);
static inline void mem_cgroup_inc_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx)
{
mem_cgroup_update_page_stat(page, idx, 1);
}
static inline void mem_cgroup_dec_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx)
{
mem_cgroup_update_page_stat(page, idx, -1);
}
bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
struct mem_cgroup *root);
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
enum vm_event_item idx)
{
if (mem_cgroup_disabled())
return;
__mem_cgroup_count_vm_event(mm, idx);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void mem_cgroup_split_huge_fixup(struct page *head);
#endif
#ifdef CONFIG_DEBUG_VM
bool mem_cgroup_bad_page_check(struct page *page);
void mem_cgroup_print_bad_page(struct page *page);
#endif
#else /* CONFIG_MEMCG */
struct mem_cgroup;
static inline int mem_cgroup_newpage_charge(struct page *page,
struct mm_struct *mm, gfp_t gfp_mask)
{
return 0;
}
static inline int mem_cgroup_cache_charge(struct page *page,
struct mm_struct *mm, gfp_t gfp_mask)
{
return 0;
}
static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
return 0;
}
static inline void mem_cgroup_commit_charge_swapin(struct page *page,
struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_uncharge_start(void)
{
}
static inline void mem_cgroup_uncharge_end(void)
{
}
static inline void mem_cgroup_uncharge_page(struct page *page)
{
}
static inline void mem_cgroup_uncharge_cache_page(struct page *page)
{
}
static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
struct mem_cgroup *memcg)
{
return &zone->lruvec;
}
static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
struct zone *zone)
{
return &zone->lruvec;
}
static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
return NULL;
}
static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
return NULL;
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
return true;
}
static inline bool task_in_mem_cgroup(struct task_struct *task,
const struct mem_cgroup *memcg)
{
return true;
}
static inline struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup *memcg)
{
return NULL;
}
static inline void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
struct mem_cgroup **memcgp)
{
}
static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
struct page *oldpage, struct page *newpage, bool migration_ok)
{
}
static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
return NULL;
}
static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
}
static inline bool mem_cgroup_disabled(void)
{
return true;
}
static inline int
mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
return 1;
}
static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
return 0;
}
static inline void
mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int increment)
{
}
static inline void
mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
}
static inline void mem_cgroup_begin_update_page_stat(struct page *page,
bool *locked, unsigned long *flags)
{
}
static inline void mem_cgroup_end_update_page_stat(struct page *page,
bool *locked, unsigned long *flags)
{
}
static inline void mem_cgroup_inc_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx)
{
}
static inline void mem_cgroup_dec_page_stat(struct page *page,
enum mem_cgroup_page_stat_item idx)
{
}
static inline
bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
struct mem_cgroup *root)
{
return false;
}
static inline void mem_cgroup_split_huge_fixup(struct page *head)
{
}
static inline
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
}
static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage)
{
}
#endif /* CONFIG_MEMCG */
#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
static inline bool
mem_cgroup_bad_page_check(struct page *page)
{
return false;
}
static inline void
mem_cgroup_print_bad_page(struct page *page)
{
}
#endif
enum {
UNDER_LIMIT,
SOFT_LIMIT,
OVER_LIMIT,
};
struct sock;
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
void sock_update_memcg(struct sock *sk);
void sock_release_memcg(struct sock *sk);
#else
static inline void sock_update_memcg(struct sock *sk)
{
}
static inline void sock_release_memcg(struct sock *sk)
{
}
#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
#ifdef CONFIG_MEMCG_KMEM
extern struct static_key memcg_kmem_enabled_key;
extern int memcg_limited_groups_array_size;
/*
* Helper macro to loop through all memcg-specific caches. Callers must still
* check if the cache is valid (it is either valid or NULL).
* the slab_mutex must be held when looping through those caches
*/
#define for_each_memcg_cache_index(_idx) \
for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
static inline bool memcg_kmem_enabled(void)
{
return static_key_false(&memcg_kmem_enabled_key);
}
/*
* In general, we'll do everything in our power to not incur in any overhead
* for non-memcg users for the kmem functions. Not even a function call, if we
* can avoid it.
*
* Therefore, we'll inline all those functions so that in the best case, we'll
* see that kmemcg is off for everybody and proceed quickly. If it is on,
* we'll still do most of the flag checking inline. We check a lot of
* conditions, but because they are pretty simple, they are expected to be
* fast.
*/
bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
int order);
void __memcg_kmem_commit_charge(struct page *page,
struct mem_cgroup *memcg, int order);
void __memcg_kmem_uncharge_pages(struct page *page, int order);
int memcg_cache_id(struct mem_cgroup *memcg);
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
struct kmem_cache *root_cache);
void memcg_release_cache(struct kmem_cache *cachep);
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
void memcg_update_array_size(int num_groups);
struct kmem_cache *
__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
/**
* memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
* @gfp: the gfp allocation flags.
* @memcg: a pointer to the memcg this was charged against.
* @order: allocation order.
*
* returns true if the memcg where the current task belongs can hold this
* allocation.
*
* We return true automatically if this allocation is not to be accounted to
* any memcg.
*/
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
if (!memcg_kmem_enabled())
return true;
/*
* __GFP_NOFAIL allocations will move on even if charging is not
* possible. Therefore we don't even try, and have this allocation
* unaccounted. We could in theory charge it with
* res_counter_charge_nofail, but we hope those allocations are rare,
* and won't be worth the trouble.
*/
if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
return true;
if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
return true;
/* If the test is dying, just let it go. */
if (unlikely(fatal_signal_pending(current)))
return true;
return __memcg_kmem_newpage_charge(gfp, memcg, order);
}
/**
* memcg_kmem_uncharge_pages: uncharge pages from memcg
* @page: pointer to struct page being freed
* @order: allocation order.
*
* there is no need to specify memcg here, since it is embedded in page_cgroup
*/
static inline void
memcg_kmem_uncharge_pages(struct page *page, int order)
{
if (memcg_kmem_enabled())
__memcg_kmem_uncharge_pages(page, order);
}
/**
* memcg_kmem_commit_charge: embeds correct memcg in a page
* @page: pointer to struct page recently allocated
* @memcg: the memcg structure we charged against
* @order: allocation order.
*
* Needs to be called after memcg_kmem_newpage_charge, regardless of success or
* failure of the allocation. if @page is NULL, this function will revert the
* charges. Otherwise, it will commit the memcg given by @memcg to the
* corresponding page_cgroup.
*/
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
if (memcg_kmem_enabled() && memcg)
__memcg_kmem_commit_charge(page, memcg, order);
}
/**
* memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
* @cachep: the original global kmem cache
* @gfp: allocation flags.
*
* This function assumes that the task allocating, which determines the memcg
* in the page allocator, belongs to the same cgroup throughout the whole
* process. Misacounting can happen if the task calls memcg_kmem_get_cache()
* while belonging to a cgroup, and later on changes. This is considered
* acceptable, and should only happen upon task migration.
*
* Before the cache is created by the memcg core, there is also a possible
* imbalance: the task belongs to a memcg, but the cache being allocated from
* is the global cache, since the child cache is not yet guaranteed to be
* ready. This case is also fine, since in this case the GFP_KMEMCG will not be
* passed and the page allocator will not attempt any cgroup accounting.
*/
static __always_inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
if (!memcg_kmem_enabled())
return cachep;
if (gfp & __GFP_NOFAIL)
return cachep;
if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
return cachep;
if (unlikely(fatal_signal_pending(current)))
return cachep;
return __memcg_kmem_get_cache(cachep, gfp);
}
#else
#define for_each_memcg_cache_index(_idx) \
for (; NULL; )
static inline bool memcg_kmem_enabled(void)
{
return false;
}
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
return true;
}
static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
{
}
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
}
static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
return -1;
}
static inline int
memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
struct kmem_cache *root_cache)
{
return 0;
}
static inline void memcg_release_cache(struct kmem_cache *cachep)
{
}
static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
struct kmem_cache *s)
{
}
static inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
return cachep;
}
static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */
#endif /* _LINUX_MEMCONTROL_H */