android_kernel_samsung_univ.../drivers/md/bcache/bset.h
Kent Overstreet 26c949f806 bcache: Add btree_insert_node()
The flow of control in the old btree insertion code was rather -
backwards; we'd recurse down the btree (in btree_insert_recurse()), and
then if we needed to split the keys to be inserted into the parent node
would be effectively returned up to btree_insert_recurse(), which would
notice there was more work to do and finish the insertion.

The main problem with this was that the full logic for btree insertion
could only be used by calling btree_insert_recurse; if you'd gotten to a
btree leaf some other way and had a key to insert, if it turned out that
node needed to be split you were SOL.

This inverts the flow of control so btree_insert_node() does _full_
btree insertion, including splitting - and takes a (leaf) btree node to
insert into as a parameter.

This means we can now _correctly_ handle cache misses - for cache
misses, we need to insert a fake "check" key into the btree when we
discover we have a cache miss - while we still have the btree locked.
Previously, if the btree node was full inserting a cache miss would just
fail.

Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-10 21:55:57 -08:00

385 lines
14 KiB
C

#ifndef _BCACHE_BSET_H
#define _BCACHE_BSET_H
#include <linux/slab.h>
/*
* BKEYS:
*
* A bkey contains a key, a size field, a variable number of pointers, and some
* ancillary flag bits.
*
* We use two different functions for validating bkeys, bch_ptr_invalid and
* bch_ptr_bad().
*
* bch_ptr_invalid() primarily filters out keys and pointers that would be
* invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
* pointer that occur in normal practice but don't point to real data.
*
* The one exception to the rule that ptr_invalid() filters out invalid keys is
* that it also filters out keys of size 0 - these are keys that have been
* completely overwritten. It'd be safe to delete these in memory while leaving
* them on disk, just unnecessary work - so we filter them out when resorting
* instead.
*
* We can't filter out stale keys when we're resorting, because garbage
* collection needs to find them to ensure bucket gens don't wrap around -
* unless we're rewriting the btree node those stale keys still exist on disk.
*
* We also implement functions here for removing some number of sectors from the
* front or the back of a bkey - this is mainly used for fixing overlapping
* extents, by removing the overlapping sectors from the older key.
*
* BSETS:
*
* A bset is an array of bkeys laid out contiguously in memory in sorted order,
* along with a header. A btree node is made up of a number of these, written at
* different times.
*
* There could be many of them on disk, but we never allow there to be more than
* 4 in memory - we lazily resort as needed.
*
* We implement code here for creating and maintaining auxiliary search trees
* (described below) for searching an individial bset, and on top of that we
* implement a btree iterator.
*
* BTREE ITERATOR:
*
* Most of the code in bcache doesn't care about an individual bset - it needs
* to search entire btree nodes and iterate over them in sorted order.
*
* The btree iterator code serves both functions; it iterates through the keys
* in a btree node in sorted order, starting from either keys after a specific
* point (if you pass it a search key) or the start of the btree node.
*
* AUXILIARY SEARCH TREES:
*
* Since keys are variable length, we can't use a binary search on a bset - we
* wouldn't be able to find the start of the next key. But binary searches are
* slow anyways, due to terrible cache behaviour; bcache originally used binary
* searches and that code topped out at under 50k lookups/second.
*
* So we need to construct some sort of lookup table. Since we only insert keys
* into the last (unwritten) set, most of the keys within a given btree node are
* usually in sets that are mostly constant. We use two different types of
* lookup tables to take advantage of this.
*
* Both lookup tables share in common that they don't index every key in the
* set; they index one key every BSET_CACHELINE bytes, and then a linear search
* is used for the rest.
*
* For sets that have been written to disk and are no longer being inserted
* into, we construct a binary search tree in an array - traversing a binary
* search tree in an array gives excellent locality of reference and is very
* fast, since both children of any node are adjacent to each other in memory
* (and their grandchildren, and great grandchildren...) - this means
* prefetching can be used to great effect.
*
* It's quite useful performance wise to keep these nodes small - not just
* because they're more likely to be in L2, but also because we can prefetch
* more nodes on a single cacheline and thus prefetch more iterations in advance
* when traversing this tree.
*
* Nodes in the auxiliary search tree must contain both a key to compare against
* (we don't want to fetch the key from the set, that would defeat the purpose),
* and a pointer to the key. We use a few tricks to compress both of these.
*
* To compress the pointer, we take advantage of the fact that one node in the
* search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
* a function (to_inorder()) that takes the index of a node in a binary tree and
* returns what its index would be in an inorder traversal, so we only have to
* store the low bits of the offset.
*
* The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
* compress that, we take advantage of the fact that when we're traversing the
* search tree at every iteration we know that both our search key and the key
* we're looking for lie within some range - bounded by our previous
* comparisons. (We special case the start of a search so that this is true even
* at the root of the tree).
*
* So we know the key we're looking for is between a and b, and a and b don't
* differ higher than bit 50, we don't need to check anything higher than bit
* 50.
*
* We don't usually need the rest of the bits, either; we only need enough bits
* to partition the key range we're currently checking. Consider key n - the
* key our auxiliary search tree node corresponds to, and key p, the key
* immediately preceding n. The lowest bit we need to store in the auxiliary
* search tree is the highest bit that differs between n and p.
*
* Note that this could be bit 0 - we might sometimes need all 80 bits to do the
* comparison. But we'd really like our nodes in the auxiliary search tree to be
* of fixed size.
*
* The solution is to make them fixed size, and when we're constructing a node
* check if p and n differed in the bits we needed them to. If they don't we
* flag that node, and when doing lookups we fallback to comparing against the
* real key. As long as this doesn't happen to often (and it seems to reliably
* happen a bit less than 1% of the time), we win - even on failures, that key
* is then more likely to be in cache than if we were doing binary searches all
* the way, since we're touching so much less memory.
*
* The keys in the auxiliary search tree are stored in (software) floating
* point, with an exponent and a mantissa. The exponent needs to be big enough
* to address all the bits in the original key, but the number of bits in the
* mantissa is somewhat arbitrary; more bits just gets us fewer failures.
*
* We need 7 bits for the exponent and 3 bits for the key's offset (since keys
* are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
* We need one node per 128 bytes in the btree node, which means the auxiliary
* search trees take up 3% as much memory as the btree itself.
*
* Constructing these auxiliary search trees is moderately expensive, and we
* don't want to be constantly rebuilding the search tree for the last set
* whenever we insert another key into it. For the unwritten set, we use a much
* simpler lookup table - it's just a flat array, so index i in the lookup table
* corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
* within each byte range works the same as with the auxiliary search trees.
*
* These are much easier to keep up to date when we insert a key - we do it
* somewhat lazily; when we shift a key up we usually just increment the pointer
* to it, only when it would overflow do we go to the trouble of finding the
* first key in that range of bytes again.
*/
/* Btree key comparison/iteration */
#define MAX_BSETS 4U
struct btree_iter {
size_t size, used;
struct btree_iter_set {
struct bkey *k, *end;
} data[MAX_BSETS];
};
struct bset_tree {
/*
* We construct a binary tree in an array as if the array
* started at 1, so that things line up on the same cachelines
* better: see comments in bset.c at cacheline_to_bkey() for
* details
*/
/* size of the binary tree and prev array */
unsigned size;
/* function of size - precalculated for to_inorder() */
unsigned extra;
/* copy of the last key in the set */
struct bkey end;
struct bkey_float *tree;
/*
* The nodes in the bset tree point to specific keys - this
* array holds the sizes of the previous key.
*
* Conceptually it's a member of struct bkey_float, but we want
* to keep bkey_float to 4 bytes and prev isn't used in the fast
* path.
*/
uint8_t *prev;
/* The actual btree node, with pointers to each sorted set */
struct bset *data;
};
static __always_inline int64_t bkey_cmp(const struct bkey *l,
const struct bkey *r)
{
return unlikely(KEY_INODE(l) != KEY_INODE(r))
? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
}
static inline size_t bkey_u64s(const struct bkey *k)
{
BUG_ON(KEY_CSUM(k) > 1);
return 2 + KEY_PTRS(k) + (KEY_CSUM(k) ? 1 : 0);
}
static inline size_t bkey_bytes(const struct bkey *k)
{
return bkey_u64s(k) * sizeof(uint64_t);
}
static inline void bkey_copy(struct bkey *dest, const struct bkey *src)
{
memcpy(dest, src, bkey_bytes(src));
}
static inline void bkey_copy_key(struct bkey *dest, const struct bkey *src)
{
if (!src)
src = &KEY(0, 0, 0);
SET_KEY_INODE(dest, KEY_INODE(src));
SET_KEY_OFFSET(dest, KEY_OFFSET(src));
}
static inline struct bkey *bkey_next(const struct bkey *k)
{
uint64_t *d = (void *) k;
return (struct bkey *) (d + bkey_u64s(k));
}
/* Keylists */
struct keylist {
struct bkey *top;
union {
uint64_t *list;
struct bkey *bottom;
};
/* Enough room for btree_split's keys without realloc */
#define KEYLIST_INLINE 16
uint64_t d[KEYLIST_INLINE];
};
static inline void bch_keylist_init(struct keylist *l)
{
l->top = (void *) (l->list = l->d);
}
static inline void bch_keylist_push(struct keylist *l)
{
l->top = bkey_next(l->top);
}
static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
{
bkey_copy(l->top, k);
bch_keylist_push(l);
}
static inline bool bch_keylist_empty(struct keylist *l)
{
return l->top == (void *) l->list;
}
static inline void bch_keylist_free(struct keylist *l)
{
if (l->list != l->d)
kfree(l->list);
}
void bch_keylist_copy(struct keylist *, struct keylist *);
struct bkey *bch_keylist_pop(struct keylist *);
void bch_keylist_pop_front(struct keylist *);
int bch_keylist_realloc(struct keylist *, int, struct cache_set *);
void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
unsigned);
bool __bch_cut_front(const struct bkey *, struct bkey *);
bool __bch_cut_back(const struct bkey *, struct bkey *);
static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
{
BUG_ON(bkey_cmp(where, k) > 0);
return __bch_cut_front(where, k);
}
static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
{
BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
return __bch_cut_back(where, k);
}
const char *bch_ptr_status(struct cache_set *, const struct bkey *);
bool __bch_ptr_invalid(struct cache_set *, int level, const struct bkey *);
bool bch_ptr_bad(struct btree *, const struct bkey *);
static inline uint8_t gen_after(uint8_t a, uint8_t b)
{
uint8_t r = a - b;
return r > 128U ? 0 : r;
}
static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
unsigned i)
{
return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
}
static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
unsigned i)
{
return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
}
typedef bool (*ptr_filter_fn)(struct btree *, const struct bkey *);
struct bkey *bch_next_recurse_key(struct btree *, struct bkey *);
struct bkey *bch_btree_iter_next(struct btree_iter *);
struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
struct btree *, ptr_filter_fn);
void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
struct bkey *__bch_btree_iter_init(struct btree *, struct btree_iter *,
struct bkey *, struct bset_tree *);
/* 32 bits total: */
#define BKEY_MID_BITS 3
#define BKEY_EXPONENT_BITS 7
#define BKEY_MANTISSA_BITS 22
#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
struct bkey_float {
unsigned exponent:BKEY_EXPONENT_BITS;
unsigned m:BKEY_MID_BITS;
unsigned mantissa:BKEY_MANTISSA_BITS;
} __packed;
/*
* BSET_CACHELINE was originally intended to match the hardware cacheline size -
* it used to be 64, but I realized the lookup code would touch slightly less
* memory if it was 128.
*
* It definites the number of bytes (in struct bset) per struct bkey_float in
* the auxiliar search tree - when we're done searching the bset_float tree we
* have this many bytes left that we do a linear search over.
*
* Since (after level 5) every level of the bset_tree is on a new cacheline,
* we're touching one fewer cacheline in the bset tree in exchange for one more
* cacheline in the linear search - but the linear search might stop before it
* gets to the second cacheline.
*/
#define BSET_CACHELINE 128
#define bset_tree_space(b) (btree_data_space(b) / BSET_CACHELINE)
#define bset_tree_bytes(b) (bset_tree_space(b) * sizeof(struct bkey_float))
#define bset_prev_bytes(b) (bset_tree_space(b) * sizeof(uint8_t))
void bch_bset_init_next(struct btree *);
void bch_bset_fix_invalidated_key(struct btree *, struct bkey *);
void bch_bset_fix_lookup_table(struct btree *, struct bkey *);
struct bkey *__bch_bset_search(struct btree *, struct bset_tree *,
const struct bkey *);
static inline struct bkey *bch_bset_search(struct btree *b, struct bset_tree *t,
const struct bkey *search)
{
return search ? __bch_bset_search(b, t, search) : t->data->start;
}
bool bch_bkey_try_merge(struct btree *, struct bkey *, struct bkey *);
void bch_btree_sort_lazy(struct btree *);
void bch_btree_sort_into(struct btree *, struct btree *);
void bch_btree_sort_and_fix_extents(struct btree *, struct btree_iter *);
void bch_btree_sort_partial(struct btree *, unsigned);
static inline void bch_btree_sort(struct btree *b)
{
bch_btree_sort_partial(b, 0);
}
int bch_bset_print_stats(struct cache_set *, char *);
#endif