1440 lines
36 KiB
C
1440 lines
36 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_intelliactive.c
|
|
*
|
|
* Copyright (C) 2010 Google, Inc.
|
|
* Copyright (C) 2014 Paul Reioux
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* Author: Mike Chan (mike@android.com)
|
|
* Author: Paul Reioux (reioux@gmail.com) Modified for intelliactive
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cputime.h>
|
|
|
|
static int active_count;
|
|
|
|
struct cpufreq_interactive_cpuinfo {
|
|
struct timer_list cpu_timer;
|
|
struct timer_list cpu_slack_timer;
|
|
spinlock_t load_lock; /* protects the next 4 fields */
|
|
u64 time_in_idle;
|
|
u64 time_in_idle_timestamp;
|
|
u64 cputime_speedadj;
|
|
u64 cputime_speedadj_timestamp;
|
|
struct cpufreq_policy *policy;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
spinlock_t target_freq_lock; /*protects target freq */
|
|
unsigned int target_freq;
|
|
unsigned int floor_freq;
|
|
u64 floor_validate_time;
|
|
u64 hispeed_validate_time; /* cluster hispeed_validate_time */
|
|
struct rw_semaphore enable_sem;
|
|
int governor_enabled;
|
|
int prev_load;
|
|
unsigned int two_phase_freq;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
|
|
|
|
/* realtime thread handles frequency scaling */
|
|
static struct task_struct *speedchange_task;
|
|
static cpumask_t speedchange_cpumask;
|
|
static spinlock_t speedchange_cpumask_lock;
|
|
static struct mutex gov_lock;
|
|
|
|
/* Hi speed to bump to from lo speed when load burst (default max) */
|
|
static unsigned int hispeed_freq = 1574400;
|
|
|
|
/* Go to hi speed when CPU load at or above this value. */
|
|
#define DEFAULT_GO_HISPEED_LOAD 99
|
|
static unsigned long go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
|
|
|
|
/* Sampling down factor to be applied to min_sample_time at max freq */
|
|
static unsigned int sampling_down_factor = 1;
|
|
|
|
/* Target load. Lower values result in higher CPU speeds. */
|
|
#define DEFAULT_TARGET_LOAD 80
|
|
static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD};
|
|
static spinlock_t target_loads_lock;
|
|
static unsigned int *target_loads = default_target_loads;
|
|
static int ntarget_loads = ARRAY_SIZE(default_target_loads);
|
|
|
|
/*
|
|
* The minimum amount of time to spend at a frequency before we can ramp down.
|
|
*/
|
|
#define DEFAULT_MIN_SAMPLE_TIME (50 * USEC_PER_MSEC)
|
|
static unsigned long min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
|
|
|
|
/*
|
|
* The sample rate of the timer used to increase frequency
|
|
*/
|
|
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
|
|
static unsigned long timer_rate = DEFAULT_TIMER_RATE;
|
|
|
|
/* Busy SDF parameters*/
|
|
#define MIN_BUSY_TIME (100 * USEC_PER_MSEC)
|
|
|
|
/*
|
|
* Wait this long before raising speed above hispeed, by default a single
|
|
* timer interval.
|
|
*/
|
|
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
|
|
static unsigned int default_above_hispeed_delay[] = {
|
|
DEFAULT_ABOVE_HISPEED_DELAY };
|
|
static spinlock_t above_hispeed_delay_lock;
|
|
static unsigned int *above_hispeed_delay = default_above_hispeed_delay;
|
|
static int nabove_hispeed_delay = ARRAY_SIZE(default_above_hispeed_delay);
|
|
|
|
/* Non-zero means indefinite speed boost active */
|
|
static int boost_val;
|
|
/* Duration of a boot pulse in usecs */
|
|
static int boostpulse_duration_val = DEFAULT_MIN_SAMPLE_TIME;
|
|
/* End time of boost pulse in ktime converted to usecs */
|
|
static u64 boostpulse_endtime;
|
|
|
|
/*
|
|
* Max additional time to wait in idle, beyond timer_rate, at speeds above
|
|
* minimum before wakeup to reduce speed, or -1 if unnecessary.
|
|
*/
|
|
#define DEFAULT_TIMER_SLACK (4 * DEFAULT_TIMER_RATE)
|
|
static int timer_slack_val = DEFAULT_TIMER_SLACK;
|
|
|
|
/*
|
|
* If the max load among other CPUs is higher than up_threshold_any_cpu_load
|
|
* or if the highest frequency among the other CPUs is higher than
|
|
* up_threshold_any_cpu_freq then do not let the frequency to drop below
|
|
* sync_freq
|
|
*/
|
|
static unsigned int up_threshold_any_cpu_load = 80;
|
|
static unsigned int sync_freq = 1574400;
|
|
static unsigned int up_threshold_any_cpu_freq = 1574400;
|
|
|
|
static int two_phase_freq_array[NR_CPUS] = {[0 ... NR_CPUS-1] = 1958400} ;
|
|
|
|
static void cpufreq_interactive_timer_resched(
|
|
struct cpufreq_interactive_cpuinfo *pcpu)
|
|
{
|
|
unsigned long expires;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pcpu->load_lock, flags);
|
|
pcpu->time_in_idle =
|
|
get_cpu_idle_time(smp_processor_id(),
|
|
&pcpu->time_in_idle_timestamp, 0);
|
|
pcpu->cputime_speedadj = 0;
|
|
pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp;
|
|
expires = jiffies + usecs_to_jiffies(timer_rate);
|
|
mod_timer_pinned(&pcpu->cpu_timer, expires);
|
|
|
|
if (timer_slack_val >= 0 && pcpu->target_freq > pcpu->policy->min) {
|
|
expires += usecs_to_jiffies(timer_slack_val);
|
|
mod_timer_pinned(&pcpu->cpu_slack_timer, expires);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pcpu->load_lock, flags);
|
|
}
|
|
|
|
/* The caller shall take enable_sem write semaphore to avoid any timer race.
|
|
* The cpu_timer and cpu_slack_timer must be deactivated when calling this
|
|
* function.
|
|
*/
|
|
static void cpufreq_interactive_timer_start(int cpu)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu);
|
|
unsigned long expires = jiffies + usecs_to_jiffies(timer_rate);
|
|
unsigned long flags;
|
|
|
|
pcpu->cpu_timer.expires = expires;
|
|
if (cpu_online(cpu)) {
|
|
add_timer_on(&pcpu->cpu_timer, cpu);
|
|
if (timer_slack_val >= 0 &&
|
|
pcpu->target_freq > pcpu->policy->min) {
|
|
expires += usecs_to_jiffies(timer_slack_val);
|
|
pcpu->cpu_slack_timer.expires = expires;
|
|
add_timer_on(&pcpu->cpu_slack_timer, cpu);
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&pcpu->load_lock, flags);
|
|
pcpu->time_in_idle =
|
|
get_cpu_idle_time(cpu, &pcpu->time_in_idle_timestamp,
|
|
0);
|
|
pcpu->cputime_speedadj = 0;
|
|
pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp;
|
|
spin_unlock_irqrestore(&pcpu->load_lock, flags);
|
|
}
|
|
|
|
static unsigned int freq_to_above_hispeed_delay(unsigned int freq)
|
|
{
|
|
int i;
|
|
unsigned int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
|
|
|
|
for (i = 0; i < nabove_hispeed_delay - 1 &&
|
|
freq >= above_hispeed_delay[i+1]; i += 2)
|
|
;
|
|
|
|
ret = above_hispeed_delay[i];
|
|
ret = (ret > (1 * USEC_PER_MSEC)) ? (ret - (1 * USEC_PER_MSEC)) : ret;
|
|
|
|
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int freq_to_targetload(unsigned int freq)
|
|
{
|
|
int i;
|
|
unsigned int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&target_loads_lock, flags);
|
|
|
|
for (i = 0; i < ntarget_loads - 1 && freq >= target_loads[i+1]; i += 2)
|
|
;
|
|
|
|
ret = target_loads[i];
|
|
spin_unlock_irqrestore(&target_loads_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If increasing frequencies never map to a lower target load then
|
|
* choose_freq() will find the minimum frequency that does not exceed its
|
|
* target load given the current load.
|
|
*/
|
|
|
|
static unsigned int choose_freq(
|
|
struct cpufreq_interactive_cpuinfo *pcpu, unsigned int loadadjfreq)
|
|
{
|
|
unsigned int freq = pcpu->policy->cur;
|
|
unsigned int prevfreq, freqmin, freqmax;
|
|
unsigned int tl;
|
|
int index;
|
|
|
|
freqmin = 0;
|
|
freqmax = UINT_MAX;
|
|
|
|
do {
|
|
prevfreq = freq;
|
|
tl = freq_to_targetload(freq);
|
|
|
|
/*
|
|
* Find the lowest frequency where the computed load is less
|
|
* than or equal to the target load.
|
|
*/
|
|
|
|
if (cpufreq_frequency_table_target(
|
|
pcpu->policy, pcpu->freq_table, loadadjfreq / tl,
|
|
CPUFREQ_RELATION_L, &index))
|
|
break;
|
|
freq = pcpu->freq_table[index].frequency;
|
|
|
|
if (freq > prevfreq) {
|
|
/* The previous frequency is too low. */
|
|
freqmin = prevfreq;
|
|
|
|
if (freq >= freqmax) {
|
|
/*
|
|
* Find the highest frequency that is less
|
|
* than freqmax.
|
|
*/
|
|
if (cpufreq_frequency_table_target(
|
|
pcpu->policy, pcpu->freq_table,
|
|
freqmax - 1, CPUFREQ_RELATION_H,
|
|
&index))
|
|
break;
|
|
freq = pcpu->freq_table[index].frequency;
|
|
|
|
if (freq == freqmin) {
|
|
/*
|
|
* The first frequency below freqmax
|
|
* has already been found to be too
|
|
* low. freqmax is the lowest speed
|
|
* we found that is fast enough.
|
|
*/
|
|
freq = freqmax;
|
|
break;
|
|
}
|
|
}
|
|
} else if (freq < prevfreq) {
|
|
/* The previous frequency is high enough. */
|
|
freqmax = prevfreq;
|
|
|
|
if (freq <= freqmin) {
|
|
/*
|
|
* Find the lowest frequency that is higher
|
|
* than freqmin.
|
|
*/
|
|
if (cpufreq_frequency_table_target(
|
|
pcpu->policy, pcpu->freq_table,
|
|
freqmin + 1, CPUFREQ_RELATION_L,
|
|
&index))
|
|
break;
|
|
freq = pcpu->freq_table[index].frequency;
|
|
|
|
/*
|
|
* If freqmax is the first frequency above
|
|
* freqmin then we have already found that
|
|
* this speed is fast enough.
|
|
*/
|
|
if (freq == freqmax)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If same frequency chosen as previous then done. */
|
|
} while (freq != prevfreq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static u64 update_load(int cpu)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu);
|
|
u64 now;
|
|
u64 now_idle;
|
|
unsigned int delta_idle;
|
|
unsigned int delta_time;
|
|
u64 active_time;
|
|
|
|
now_idle = get_cpu_idle_time(cpu, &now, 0);
|
|
delta_idle = (unsigned int)(now_idle - pcpu->time_in_idle);
|
|
delta_time = (unsigned int)(now - pcpu->time_in_idle_timestamp);
|
|
|
|
if (delta_time <= delta_idle)
|
|
active_time = 0;
|
|
else
|
|
active_time = delta_time - delta_idle;
|
|
|
|
pcpu->cputime_speedadj += active_time * pcpu->policy->cur;
|
|
|
|
pcpu->time_in_idle = now_idle;
|
|
pcpu->time_in_idle_timestamp = now;
|
|
return now;
|
|
}
|
|
|
|
static void cpufreq_interactive_timer(unsigned long data)
|
|
{
|
|
u64 now;
|
|
unsigned int delta_time;
|
|
u64 cputime_speedadj;
|
|
int cpu_load;
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, data);
|
|
unsigned int new_freq;
|
|
unsigned int loadadjfreq;
|
|
unsigned int index;
|
|
unsigned long flags;
|
|
bool boosted;
|
|
unsigned long mod_min_sample_time;
|
|
int i, max_load;
|
|
unsigned int max_freq;
|
|
struct cpufreq_interactive_cpuinfo *picpu;
|
|
static unsigned int phase = 0;
|
|
static unsigned int counter = 0;
|
|
unsigned int nr_cpus;
|
|
|
|
if (!down_read_trylock(&pcpu->enable_sem))
|
|
return;
|
|
if (!pcpu->governor_enabled)
|
|
goto exit;
|
|
|
|
if (cpu_is_offline(data))
|
|
goto exit;
|
|
|
|
spin_lock_irqsave(&pcpu->load_lock, flags);
|
|
now = update_load(data);
|
|
delta_time = (unsigned int)(now - pcpu->cputime_speedadj_timestamp);
|
|
cputime_speedadj = pcpu->cputime_speedadj;
|
|
spin_unlock_irqrestore(&pcpu->load_lock, flags);
|
|
|
|
if (WARN_ON_ONCE(!delta_time))
|
|
goto rearm;
|
|
|
|
spin_lock_irqsave(&pcpu->target_freq_lock, flags);
|
|
do_div(cputime_speedadj, delta_time);
|
|
loadadjfreq = (unsigned int)cputime_speedadj * 100;
|
|
cpu_load = loadadjfreq / pcpu->target_freq;
|
|
pcpu->prev_load = cpu_load;
|
|
boosted = boost_val || now < boostpulse_endtime;
|
|
|
|
cpufreq_notify_utilization(pcpu->policy, cpu_load);
|
|
|
|
if (counter < 5) {
|
|
counter++;
|
|
if (counter > 2) {
|
|
phase = 1;
|
|
}
|
|
}
|
|
|
|
if (cpu_load >= go_hispeed_load || boosted) {
|
|
if (pcpu->target_freq < hispeed_freq) {
|
|
nr_cpus = num_online_cpus();
|
|
|
|
pcpu->two_phase_freq = two_phase_freq_array[nr_cpus-1];
|
|
if (pcpu->two_phase_freq < pcpu->policy->cur)
|
|
phase = 1;
|
|
if (pcpu->two_phase_freq != 0 && phase == 0) {
|
|
new_freq = pcpu->two_phase_freq;
|
|
} else
|
|
new_freq = hispeed_freq;
|
|
} else {
|
|
new_freq = choose_freq(pcpu, loadadjfreq);
|
|
|
|
if (new_freq < hispeed_freq)
|
|
new_freq = hispeed_freq;
|
|
}
|
|
} else {
|
|
new_freq = choose_freq(pcpu, loadadjfreq);
|
|
|
|
if (sync_freq && new_freq < sync_freq) {
|
|
|
|
max_load = 0;
|
|
max_freq = 0;
|
|
|
|
for_each_online_cpu(i) {
|
|
picpu = &per_cpu(cpuinfo, i);
|
|
|
|
if (i == data || picpu->prev_load <
|
|
up_threshold_any_cpu_load)
|
|
continue;
|
|
|
|
max_load = max(max_load, picpu->prev_load);
|
|
max_freq = max(max_freq, picpu->target_freq);
|
|
}
|
|
|
|
if (max_freq > up_threshold_any_cpu_freq ||
|
|
max_load >= up_threshold_any_cpu_load)
|
|
new_freq = sync_freq;
|
|
}
|
|
}
|
|
|
|
if (counter > 0) {
|
|
counter--;
|
|
if (counter == 0) {
|
|
phase = 0;
|
|
}
|
|
}
|
|
|
|
if (pcpu->target_freq >= hispeed_freq &&
|
|
new_freq > pcpu->target_freq &&
|
|
now - pcpu->hispeed_validate_time <
|
|
freq_to_above_hispeed_delay(pcpu->target_freq)) {
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
goto rearm;
|
|
}
|
|
|
|
pcpu->hispeed_validate_time = now;
|
|
|
|
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
|
|
new_freq, CPUFREQ_RELATION_H,
|
|
&index)) {
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
goto rearm;
|
|
}
|
|
|
|
new_freq = pcpu->freq_table[index].frequency;
|
|
|
|
/*
|
|
* Do not scale below floor_freq unless we have been at or above the
|
|
* floor frequency for the minimum sample time since last validated.
|
|
*/
|
|
if (sampling_down_factor && pcpu->policy->cur == pcpu->policy->max)
|
|
mod_min_sample_time = sampling_down_factor;
|
|
else
|
|
mod_min_sample_time = min_sample_time;
|
|
|
|
if (new_freq < pcpu->floor_freq) {
|
|
if (now - pcpu->floor_validate_time < mod_min_sample_time) {
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
goto rearm;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the timestamp for checking whether speed has been held at
|
|
* or above the selected frequency for a minimum of min_sample_time,
|
|
* if not boosted to hispeed_freq. If boosted to hispeed_freq then we
|
|
* allow the speed to drop as soon as the boostpulse duration expires
|
|
* (or the indefinite boost is turned off).
|
|
*/
|
|
|
|
if (!boosted || new_freq > hispeed_freq) {
|
|
pcpu->floor_freq = new_freq;
|
|
pcpu->floor_validate_time = now;
|
|
}
|
|
|
|
if (pcpu->target_freq == new_freq &&
|
|
pcpu->target_freq <= pcpu->policy->cur) {
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
goto rearm_if_notmax;
|
|
}
|
|
|
|
pcpu->target_freq = new_freq;
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
|
|
cpumask_set_cpu(data, &speedchange_cpumask);
|
|
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
|
|
wake_up_process(speedchange_task);
|
|
|
|
rearm_if_notmax:
|
|
/*
|
|
* Already set max speed and don't see a need to change that,
|
|
* wait until next idle to re-evaluate, don't need timer.
|
|
*/
|
|
if (pcpu->target_freq == pcpu->policy->max)
|
|
goto exit;
|
|
|
|
rearm:
|
|
if (!timer_pending(&pcpu->cpu_timer))
|
|
cpufreq_interactive_timer_resched(pcpu);
|
|
|
|
exit:
|
|
up_read(&pcpu->enable_sem);
|
|
return;
|
|
}
|
|
|
|
static void cpufreq_interactive_idle_start(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu);
|
|
int pending;
|
|
u64 now;
|
|
|
|
if (!down_read_trylock(&pcpu->enable_sem))
|
|
return;
|
|
if (!pcpu->governor_enabled)
|
|
goto exit;
|
|
|
|
/* Cancel the timer if cpu is offline */
|
|
if (cpu_is_offline(cpu)) {
|
|
del_timer(&pcpu->cpu_timer);
|
|
del_timer(&pcpu->cpu_slack_timer);
|
|
goto exit;
|
|
}
|
|
|
|
pending = timer_pending(&pcpu->cpu_timer);
|
|
|
|
if (pcpu->target_freq != pcpu->policy->min) {
|
|
/*
|
|
* Entering idle while not at lowest speed. On some
|
|
* platforms this can hold the other CPU(s) at that speed
|
|
* even though the CPU is idle. Set a timer to re-evaluate
|
|
* speed so this idle CPU doesn't hold the other CPUs above
|
|
* min indefinitely. This should probably be a quirk of
|
|
* the CPUFreq driver.
|
|
*/
|
|
if (!pending) {
|
|
cpufreq_interactive_timer_resched(pcpu);
|
|
|
|
now = ktime_to_us(ktime_get());
|
|
if ((pcpu->policy->cur == pcpu->policy->max) &&
|
|
(now - pcpu->hispeed_validate_time) >
|
|
MIN_BUSY_TIME) {
|
|
pcpu->floor_validate_time = now;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
exit:
|
|
up_read(&pcpu->enable_sem);
|
|
}
|
|
|
|
static void cpufreq_interactive_idle_end(void)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, smp_processor_id());
|
|
|
|
if (!down_read_trylock(&pcpu->enable_sem))
|
|
return;
|
|
if (!pcpu->governor_enabled) {
|
|
up_read(&pcpu->enable_sem);
|
|
return;
|
|
}
|
|
|
|
/* Arm the timer for 1-2 ticks later if not already. */
|
|
if (!timer_pending(&pcpu->cpu_timer)) {
|
|
cpufreq_interactive_timer_resched(pcpu);
|
|
} else if (time_after_eq(jiffies, pcpu->cpu_timer.expires)) {
|
|
del_timer(&pcpu->cpu_timer);
|
|
del_timer(&pcpu->cpu_slack_timer);
|
|
cpufreq_interactive_timer(smp_processor_id());
|
|
}
|
|
|
|
up_read(&pcpu->enable_sem);
|
|
}
|
|
|
|
static int cpufreq_interactive_speedchange_task(void *data)
|
|
{
|
|
unsigned int cpu;
|
|
cpumask_t tmp_mask;
|
|
unsigned long flags;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
|
|
|
|
if (cpumask_empty(&speedchange_cpumask)) {
|
|
spin_unlock_irqrestore(&speedchange_cpumask_lock,
|
|
flags);
|
|
schedule();
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
tmp_mask = speedchange_cpumask;
|
|
cpumask_clear(&speedchange_cpumask);
|
|
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
|
|
|
|
for_each_cpu(cpu, &tmp_mask) {
|
|
unsigned int j;
|
|
unsigned int max_freq = 0;
|
|
|
|
pcpu = &per_cpu(cpuinfo, cpu);
|
|
if (!down_read_trylock(&pcpu->enable_sem))
|
|
continue;
|
|
if (!pcpu->governor_enabled) {
|
|
up_read(&pcpu->enable_sem);
|
|
continue;
|
|
}
|
|
|
|
for_each_cpu(j, pcpu->policy->cpus) {
|
|
struct cpufreq_interactive_cpuinfo *pjcpu =
|
|
&per_cpu(cpuinfo, j);
|
|
|
|
if (pjcpu->target_freq > max_freq)
|
|
max_freq = pjcpu->target_freq;
|
|
}
|
|
|
|
if (max_freq != pcpu->policy->cur) {
|
|
__cpufreq_driver_target(pcpu->policy,
|
|
max_freq,
|
|
CPUFREQ_RELATION_H);
|
|
}
|
|
|
|
up_read(&pcpu->enable_sem);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpufreq_interactive_boost(void)
|
|
{
|
|
int i;
|
|
int anyboost = 0;
|
|
unsigned long flags[2];
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
spin_lock_irqsave(&speedchange_cpumask_lock, flags[0]);
|
|
|
|
for_each_online_cpu(i) {
|
|
pcpu = &per_cpu(cpuinfo, i);
|
|
|
|
spin_lock_irqsave(&pcpu->target_freq_lock, flags[1]);
|
|
if (pcpu->target_freq < hispeed_freq) {
|
|
pcpu->target_freq = hispeed_freq;
|
|
cpumask_set_cpu(i, &speedchange_cpumask);
|
|
pcpu->hispeed_validate_time =
|
|
ktime_to_us(ktime_get());
|
|
anyboost = 1;
|
|
}
|
|
|
|
/*
|
|
* Set floor freq and (re)start timer for when last
|
|
* validated.
|
|
*/
|
|
|
|
pcpu->floor_freq = hispeed_freq;
|
|
pcpu->floor_validate_time = ktime_to_us(ktime_get());
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags[1]);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags[0]);
|
|
|
|
if (anyboost)
|
|
wake_up_process(speedchange_task);
|
|
}
|
|
|
|
static int cpufreq_interactive_notifier(
|
|
struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
if (val == CPUFREQ_POSTCHANGE) {
|
|
pcpu = &per_cpu(cpuinfo, freq->cpu);
|
|
if (!down_read_trylock(&pcpu->enable_sem))
|
|
return 0;
|
|
if (!pcpu->governor_enabled) {
|
|
up_read(&pcpu->enable_sem);
|
|
return 0;
|
|
}
|
|
|
|
for_each_cpu(cpu, pcpu->policy->cpus) {
|
|
struct cpufreq_interactive_cpuinfo *pjcpu =
|
|
&per_cpu(cpuinfo, cpu);
|
|
if (cpu != freq->cpu) {
|
|
if (!down_read_trylock(&pjcpu->enable_sem))
|
|
continue;
|
|
if (!pjcpu->governor_enabled) {
|
|
up_read(&pjcpu->enable_sem);
|
|
continue;
|
|
}
|
|
}
|
|
spin_lock_irqsave(&pjcpu->load_lock, flags);
|
|
update_load(cpu);
|
|
spin_unlock_irqrestore(&pjcpu->load_lock, flags);
|
|
if (cpu != freq->cpu)
|
|
up_read(&pjcpu->enable_sem);
|
|
}
|
|
|
|
up_read(&pcpu->enable_sem);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block cpufreq_notifier_block = {
|
|
.notifier_call = cpufreq_interactive_notifier,
|
|
};
|
|
|
|
static unsigned int *get_tokenized_data(const char *buf, int *num_tokens)
|
|
{
|
|
const char *cp;
|
|
int i;
|
|
int ntokens = 1;
|
|
int *tokenized_data;
|
|
int err = -EINVAL;
|
|
|
|
cp = buf;
|
|
while ((cp = strpbrk(cp + 1, " :")))
|
|
ntokens++;
|
|
|
|
if (!(ntokens & 0x1))
|
|
goto err;
|
|
|
|
tokenized_data = kmalloc(ntokens * sizeof(int), GFP_KERNEL);
|
|
if (!tokenized_data) {
|
|
err = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
cp = buf;
|
|
i = 0;
|
|
while (i < ntokens) {
|
|
if (sscanf(cp, "%d", &tokenized_data[i++]) != 1)
|
|
goto err_kfree;
|
|
|
|
cp = strpbrk(cp, " :");
|
|
if (!cp)
|
|
break;
|
|
cp++;
|
|
}
|
|
|
|
if (i != ntokens)
|
|
goto err_kfree;
|
|
|
|
*num_tokens = ntokens;
|
|
return tokenized_data;
|
|
|
|
err_kfree:
|
|
kfree(tokenized_data);
|
|
err:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static ssize_t show_two_phase_freq
|
|
(struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
int i = 0 ;
|
|
int shift = 0 ;
|
|
char *buf_pos = buf;
|
|
for ( i = 0 ; i < NR_CPUS; i++) {
|
|
shift = sprintf(buf_pos,"%d,",two_phase_freq_array[i]);
|
|
buf_pos += shift;
|
|
}
|
|
*(buf_pos-1) = '\0';
|
|
return strlen(buf);
|
|
}
|
|
|
|
static ssize_t store_two_phase_freq(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
|
|
int ret = 0;
|
|
if (NR_CPUS == 1)
|
|
ret = sscanf(buf,"%u",&two_phase_freq_array[0]);
|
|
else if (NR_CPUS == 2)
|
|
ret = sscanf(buf,"%u,%u",&two_phase_freq_array[0],
|
|
&two_phase_freq_array[1]);
|
|
else if (NR_CPUS == 4)
|
|
ret = sscanf(buf, "%u,%u,%u,%u", &two_phase_freq_array[0],
|
|
&two_phase_freq_array[1],
|
|
&two_phase_freq_array[2],
|
|
&two_phase_freq_array[3]);
|
|
if (ret < NR_CPUS)
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr two_phase_freq_attr =
|
|
__ATTR(two_phase_freq, S_IRUGO | S_IWUSR,
|
|
show_two_phase_freq, store_two_phase_freq);
|
|
|
|
static ssize_t show_target_loads(
|
|
struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
int i;
|
|
ssize_t ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&target_loads_lock, flags);
|
|
|
|
for (i = 0; i < ntarget_loads; i++)
|
|
ret += sprintf(buf + ret, "%u%s", target_loads[i],
|
|
i & 0x1 ? ":" : " ");
|
|
|
|
sprintf(buf + ret - 1, "\n");
|
|
spin_unlock_irqrestore(&target_loads_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_target_loads(
|
|
struct kobject *kobj, struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ntokens;
|
|
unsigned int *new_target_loads = NULL;
|
|
unsigned long flags;
|
|
|
|
new_target_loads = get_tokenized_data(buf, &ntokens);
|
|
if (IS_ERR(new_target_loads))
|
|
return PTR_RET(new_target_loads);
|
|
|
|
spin_lock_irqsave(&target_loads_lock, flags);
|
|
if (target_loads != default_target_loads)
|
|
kfree(target_loads);
|
|
target_loads = new_target_loads;
|
|
ntarget_loads = ntokens;
|
|
spin_unlock_irqrestore(&target_loads_lock, flags);
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr target_loads_attr =
|
|
__ATTR(target_loads, S_IRUGO | S_IWUSR,
|
|
show_target_loads, store_target_loads);
|
|
|
|
static ssize_t show_above_hispeed_delay(
|
|
struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
int i;
|
|
ssize_t ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
|
|
|
|
for (i = 0; i < nabove_hispeed_delay; i++)
|
|
ret += sprintf(buf + ret, "%u%s", above_hispeed_delay[i],
|
|
i & 0x1 ? ":" : " ");
|
|
|
|
sprintf(buf + ret - 1, "\n");
|
|
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_above_hispeed_delay(
|
|
struct kobject *kobj, struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ntokens;
|
|
unsigned int *new_above_hispeed_delay = NULL;
|
|
unsigned long flags;
|
|
|
|
new_above_hispeed_delay = get_tokenized_data(buf, &ntokens);
|
|
if (IS_ERR(new_above_hispeed_delay))
|
|
return PTR_RET(new_above_hispeed_delay);
|
|
|
|
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
|
|
if (above_hispeed_delay != default_above_hispeed_delay)
|
|
kfree(above_hispeed_delay);
|
|
above_hispeed_delay = new_above_hispeed_delay;
|
|
nabove_hispeed_delay = ntokens;
|
|
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr above_hispeed_delay_attr =
|
|
__ATTR(above_hispeed_delay, S_IRUGO | S_IWUSR,
|
|
show_above_hispeed_delay, store_above_hispeed_delay);
|
|
|
|
static ssize_t show_hispeed_freq(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", hispeed_freq);
|
|
}
|
|
|
|
static ssize_t store_hispeed_freq(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ret;
|
|
long unsigned int val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
hispeed_freq = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
|
|
show_hispeed_freq, store_hispeed_freq);
|
|
|
|
static ssize_t show_sampling_down_factor(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", sampling_down_factor);
|
|
}
|
|
|
|
static ssize_t store_sampling_down_factor(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ret;
|
|
long unsigned int val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (val > 3)
|
|
val = 3;
|
|
sampling_down_factor = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr sampling_down_factor_attr =
|
|
__ATTR(sampling_down_factor, 0644,
|
|
show_sampling_down_factor, store_sampling_down_factor);
|
|
|
|
static ssize_t show_go_hispeed_load(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", go_hispeed_load);
|
|
}
|
|
|
|
static ssize_t store_go_hispeed_load(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
go_hispeed_load = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644,
|
|
show_go_hispeed_load, store_go_hispeed_load);
|
|
|
|
static ssize_t show_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", min_sample_time);
|
|
}
|
|
|
|
static ssize_t store_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
min_sample_time = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
|
|
show_min_sample_time, store_min_sample_time);
|
|
|
|
static ssize_t show_timer_rate(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", timer_rate);
|
|
}
|
|
|
|
static ssize_t store_timer_rate(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val, val_round;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
val_round = jiffies_to_usecs(usecs_to_jiffies(val));
|
|
if (val != val_round)
|
|
pr_warn("timer_rate not aligned to jiffy. Rounded up to %lu\n",
|
|
val_round);
|
|
|
|
timer_rate = val_round;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
|
|
show_timer_rate, store_timer_rate);
|
|
|
|
static ssize_t show_timer_slack(
|
|
struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", timer_slack_val);
|
|
}
|
|
|
|
static ssize_t store_timer_slack(
|
|
struct kobject *kobj, struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtol(buf, 10, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
timer_slack_val = val;
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(timer_slack);
|
|
|
|
static ssize_t show_boost(struct kobject *kobj, struct attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", boost_val);
|
|
}
|
|
|
|
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
boost_val = val;
|
|
|
|
if (boost_val)
|
|
cpufreq_interactive_boost();
|
|
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(boost);
|
|
|
|
static ssize_t show_boostpulse(
|
|
struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", (unsigned)boostpulse_endtime);
|
|
}
|
|
|
|
static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
boostpulse_endtime = ktime_to_us(ktime_get()) + boostpulse_duration_val;
|
|
cpufreq_interactive_boost();
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr boostpulse =
|
|
__ATTR(boostpulse, 0644, show_boostpulse, store_boostpulse);
|
|
|
|
static ssize_t show_boostpulse_duration(
|
|
struct kobject *kobj, struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", boostpulse_duration_val);
|
|
}
|
|
|
|
static ssize_t store_boostpulse_duration(
|
|
struct kobject *kobj, struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
boostpulse_duration_val = val;
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(boostpulse_duration);
|
|
|
|
static ssize_t show_sync_freq(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", sync_freq);
|
|
}
|
|
|
|
static ssize_t store_sync_freq(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
unsigned long val;
|
|
int mpd = strcmp(current->comm, "mpdecision");
|
|
|
|
if (mpd == 0)
|
|
return ret;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
sync_freq = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr sync_freq_attr = __ATTR(sync_freq, 0644,
|
|
show_sync_freq, store_sync_freq);
|
|
|
|
static ssize_t show_up_threshold_any_cpu_load(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%u\n", up_threshold_any_cpu_load);
|
|
}
|
|
|
|
static ssize_t store_up_threshold_any_cpu_load(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
up_threshold_any_cpu_load = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr up_threshold_any_cpu_load_attr =
|
|
__ATTR(up_threshold_any_cpu_load, 0644,
|
|
show_up_threshold_any_cpu_load,
|
|
store_up_threshold_any_cpu_load);
|
|
|
|
static ssize_t show_up_threshold_any_cpu_freq(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%u\n", up_threshold_any_cpu_freq);
|
|
}
|
|
|
|
static ssize_t store_up_threshold_any_cpu_freq(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
up_threshold_any_cpu_freq = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr up_threshold_any_cpu_freq_attr =
|
|
__ATTR(up_threshold_any_cpu_freq, 0644,
|
|
show_up_threshold_any_cpu_freq,
|
|
store_up_threshold_any_cpu_freq);
|
|
|
|
static struct attribute *interactive_attributes[] = {
|
|
&target_loads_attr.attr,
|
|
&above_hispeed_delay_attr.attr,
|
|
&hispeed_freq_attr.attr,
|
|
&go_hispeed_load_attr.attr,
|
|
&min_sample_time_attr.attr,
|
|
&timer_rate_attr.attr,
|
|
&timer_slack.attr,
|
|
&boost.attr,
|
|
&boostpulse.attr,
|
|
&boostpulse_duration.attr,
|
|
&sampling_down_factor_attr.attr,
|
|
&sync_freq_attr.attr,
|
|
&up_threshold_any_cpu_load_attr.attr,
|
|
&up_threshold_any_cpu_freq_attr.attr,
|
|
&two_phase_freq_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group interactive_attr_group = {
|
|
.attrs = interactive_attributes,
|
|
.name = "intelliactive",
|
|
};
|
|
|
|
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
|
|
unsigned long val,
|
|
void *data)
|
|
{
|
|
switch (val) {
|
|
case IDLE_START:
|
|
cpufreq_interactive_idle_start();
|
|
break;
|
|
case IDLE_END:
|
|
cpufreq_interactive_idle_end();
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block cpufreq_interactive_idle_nb = {
|
|
.notifier_call = cpufreq_interactive_idle_notifier,
|
|
};
|
|
|
|
static int cpufreq_governor_intelliactive(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
int rc;
|
|
unsigned int j;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned long flags;
|
|
unsigned int cpu = policy->cpu;
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if ((!cpu_online(cpu)) || (!policy))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&gov_lock);
|
|
|
|
freq_table =
|
|
cpufreq_frequency_get_table(cpu);
|
|
if (!hispeed_freq)
|
|
hispeed_freq = policy->max;
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
pcpu = &per_cpu(cpuinfo, j);
|
|
pcpu->policy = policy;
|
|
pcpu->target_freq = policy->cur;
|
|
pcpu->freq_table = freq_table;
|
|
pcpu->floor_freq = pcpu->target_freq;
|
|
pcpu->floor_validate_time =
|
|
ktime_to_us(ktime_get());
|
|
pcpu->hispeed_validate_time =
|
|
pcpu->floor_validate_time;
|
|
down_write(&pcpu->enable_sem);
|
|
del_timer_sync(&pcpu->cpu_timer);
|
|
del_timer_sync(&pcpu->cpu_slack_timer);
|
|
if (cpu_online(j))
|
|
cpufreq_interactive_timer_start(j);
|
|
pcpu->governor_enabled = 1;
|
|
up_write(&pcpu->enable_sem);
|
|
}
|
|
|
|
/*
|
|
* Do not register the idle hook and create sysfs
|
|
* entries if we have already done so.
|
|
*/
|
|
if (++active_count > 1) {
|
|
mutex_unlock(&gov_lock);
|
|
return 0;
|
|
}
|
|
|
|
rc = sysfs_create_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
if (rc) {
|
|
mutex_unlock(&gov_lock);
|
|
return rc;
|
|
}
|
|
|
|
idle_notifier_register(&cpufreq_interactive_idle_nb);
|
|
cpufreq_register_notifier(
|
|
&cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER);
|
|
mutex_unlock(&gov_lock);
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
mutex_lock(&gov_lock);
|
|
for_each_cpu(j, policy->cpus) {
|
|
pcpu = &per_cpu(cpuinfo, j);
|
|
down_write(&pcpu->enable_sem);
|
|
pcpu->governor_enabled = 0;
|
|
pcpu->target_freq = 0;
|
|
del_timer_sync(&pcpu->cpu_timer);
|
|
del_timer_sync(&pcpu->cpu_slack_timer);
|
|
up_write(&pcpu->enable_sem);
|
|
}
|
|
|
|
if (--active_count > 0) {
|
|
mutex_unlock(&gov_lock);
|
|
return 0;
|
|
}
|
|
|
|
cpufreq_unregister_notifier(
|
|
&cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER);
|
|
idle_notifier_unregister(&cpufreq_interactive_idle_nb);
|
|
sysfs_remove_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
mutex_unlock(&gov_lock);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
/* If device is being removed, skip set limits */
|
|
if (!policy)
|
|
break;
|
|
__cpufreq_driver_target(policy,
|
|
policy->cur, CPUFREQ_RELATION_L);
|
|
for_each_cpu(j, policy->cpus) {
|
|
pcpu = &per_cpu(cpuinfo, j);
|
|
|
|
/* hold write semaphore to avoid race */
|
|
down_write(&pcpu->enable_sem);
|
|
if (pcpu->governor_enabled == 0) {
|
|
up_write(&pcpu->enable_sem);
|
|
continue;
|
|
}
|
|
|
|
spin_lock_irqsave(&pcpu->target_freq_lock, flags);
|
|
/* update target_freq firstly */
|
|
if (policy->max < pcpu->target_freq)
|
|
pcpu->target_freq = policy->max;
|
|
else if (policy->min > pcpu->target_freq)
|
|
pcpu->target_freq = policy->min;
|
|
|
|
spin_unlock_irqrestore(&pcpu->target_freq_lock, flags);
|
|
/* Reschedule timer.
|
|
* Delete the timers, else the timer callback may
|
|
* return without re-arm the timer when failed
|
|
* acquire the semaphore. This race may cause timer
|
|
* stopped unexpectedly.
|
|
*/
|
|
del_timer_sync(&pcpu->cpu_timer);
|
|
del_timer_sync(&pcpu->cpu_slack_timer);
|
|
cpufreq_interactive_timer_start(j);
|
|
up_write(&pcpu->enable_sem);
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTELLIACTIVE
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_intelliactive = {
|
|
.name = "intelliactive",
|
|
.governor = cpufreq_governor_intelliactive,
|
|
.max_transition_latency = 10000000,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static void cpufreq_interactive_nop_timer(unsigned long data)
|
|
{
|
|
}
|
|
|
|
static int __init cpufreq_intelliactive_init(void)
|
|
{
|
|
unsigned int i;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
|
|
|
|
/* Initalize per-cpu timers */
|
|
for_each_possible_cpu(i) {
|
|
pcpu = &per_cpu(cpuinfo, i);
|
|
init_timer_deferrable(&pcpu->cpu_timer);
|
|
pcpu->cpu_timer.function = cpufreq_interactive_timer;
|
|
pcpu->cpu_timer.data = i;
|
|
init_timer(&pcpu->cpu_slack_timer);
|
|
pcpu->cpu_slack_timer.function = cpufreq_interactive_nop_timer;
|
|
spin_lock_init(&pcpu->load_lock);
|
|
spin_lock_init(&pcpu->target_freq_lock);
|
|
init_rwsem(&pcpu->enable_sem);
|
|
}
|
|
|
|
spin_lock_init(&target_loads_lock);
|
|
spin_lock_init(&speedchange_cpumask_lock);
|
|
spin_lock_init(&above_hispeed_delay_lock);
|
|
mutex_init(&gov_lock);
|
|
speedchange_task =
|
|
kthread_create(cpufreq_interactive_speedchange_task, NULL,
|
|
"cfintelliactive");
|
|
if (IS_ERR(speedchange_task))
|
|
return PTR_ERR(speedchange_task);
|
|
|
|
sched_setscheduler_nocheck(speedchange_task, SCHED_FIFO, ¶m);
|
|
get_task_struct(speedchange_task);
|
|
|
|
/* NB: wake up so the thread does not look hung to the freezer */
|
|
wake_up_process(speedchange_task);
|
|
|
|
return cpufreq_register_governor(&cpufreq_gov_intelliactive);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTELLIACTIVE
|
|
fs_initcall(cpufreq_intelliactive_init);
|
|
#else
|
|
module_init(cpufreq_intelliactive_init);
|
|
#endif
|
|
|
|
static void __exit cpufreq_interactive_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_intelliactive);
|
|
kthread_stop(speedchange_task);
|
|
put_task_struct(speedchange_task);
|
|
}
|
|
|
|
module_exit(cpufreq_interactive_exit);
|
|
|
|
MODULE_AUTHOR("Mike Chan <mike@android.com>");
|
|
MODULE_AUTHOR("Paul Reioux <reioux@gmail.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_intelliactive' - A cpufreq governor for "
|
|
"Latency sensitive workloads based on Google's Interactive");
|
|
MODULE_LICENSE("GPL");
|