14679 Commits

Author SHA1 Message Date
Yoshihiro YUNOMAE
50ecf2c3af ring-buffer: Change unsigned long type of ring_buffer_oldest_event_ts() to u64
ring_buffer_oldest_event_ts() should return a value of u64 type, because
ring_buffer_per_cpu->buffer_page->buffer_data_page->time_stamp is u64 type.

Link: http://lkml.kernel.org/r/1349998076-15495-5-git-send-email-dhsharp@google.com

Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Signed-off-by: David Sharp <dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-11-02 10:21:48 -04:00
David Sharp
60303ed3f4 tracing: Reset ring buffer when changing trace_clocks
Because the "tsc" clock isn't in nanoseconds, the ring buffer must be
reset when changing clocks so that incomparable timestamps don't end up
in the same trace.

Tested: Confirmed switching clocks resets the trace buffer.

Google-Bug-Id: 6980623
Link: http://lkml.kernel.org/r/1349998076-15495-3-git-send-email-dhsharp@google.com

Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: David Sharp <dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-11-02 10:21:47 -04:00
Richard Cochran
65f8f9a1c1 time: remove the timecompare code.
This patch removes the timecompare code from the kernel. The top five
reasons to do this are:

1. There are no more users of this code.
2. The original idea was a bit weak.
3. The original author has disappeared.
4. The code was not general purpose but tuned to a particular hardware,
5. There are better ways to accomplish clock synchronization.

Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Tested-by: Bob Liu <lliubbo@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-01 11:41:35 -04:00
Chuansheng Liu
b8f61116c1 tick: Correct the comments for tick_sched_timer()
In the comments of function tick_sched_timer(), the sentence
"timer->base->cpu_base->lock held" is not right.

In function __run_hrtimer(), before call timer->function(),
the cpu_base->lock has been unlocked.

Signed-off-by: liu chuansheng <chuansheng.liu@intel.com>
Cc: fei.li@intel.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1351098455.15558.1421.camel@cliu38-desktop-build
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-11-01 12:13:59 +01:00
Sankara Muthukrishnan
f3de44edf3 irq: Set CPU affinity right on thread creation
As irq_thread_check_affinity is called ONLY inside the while loop in
the irq thread, the core affinity is set only when an interrupt
occurs. This patch sets the core affinity right after the irq thread
is created and before it waits for interrupts. In real-tiime targets
that do not typically change the core affinity of irqs during
run-time, this patch will save additional latency of an irq thread in
setting the core affinity during the first interrupt occurrence for
that irq.

Signed-off-by: Sankara S Muthukrishnan <sankara.m@ni.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/CAFQPvXeVZ858WFYimEU5uvLNxLDd6bJMmqWihFmbCf3ntokz0A@mail.gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-11-01 12:11:31 +01:00
Thomas Gleixner
293a7a0a16 genirq: Provide means to retrigger parent
Attempts to retrigger nested threaded IRQs currently fail because they
have no primary handler. In order to support retrigger of nested
IRQs, the parent IRQ needs to be retriggered.

To fix, when an IRQ needs to be resent, if the interrupt has a parent
IRQ and runs in the context of the parent IRQ, then resend the parent.

Also, handle_nested_irq() needs to clear the replay flag like the
other handlers, otherwise check_irq_resend() will set it and it will
never be cleared.  Without clearing, it results in the first resend
working fine, but check_irq_resend() returning early on subsequent
resends because the replay flag is still set.

Problem discovered on ARM/OMAP platforms where a nested IRQ that's
also a wakeup IRQ happens late in suspend and needed to be retriggered
during the resume process.

[khilman@ti.com: changelog edits, clear IRQS_REPLAY in handle_nested_irq()]

Reported-by: Kevin Hilman <khilman@ti.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/1350425269-11489-1-git-send-email-khilman@deeprootsystems.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-11-01 12:11:31 +01:00
Thomas Gleixner
59fa624519 futex: Handle futex_pi OWNER_DIED take over correctly
Siddhesh analyzed a failure in the take over of pi futexes in case the
owner died and provided a workaround.
See: http://sourceware.org/bugzilla/show_bug.cgi?id=14076

The detailed problem analysis shows:

Futex F is initialized with PTHREAD_PRIO_INHERIT and
PTHREAD_MUTEX_ROBUST_NP attributes.

T1 lock_futex_pi(F);

T2 lock_futex_pi(F);
   --> T2 blocks on the futex and creates pi_state which is associated
       to T1.

T1 exits
   --> exit_robust_list() runs
       --> Futex F userspace value TID field is set to 0 and
           FUTEX_OWNER_DIED bit is set.

T3 lock_futex_pi(F);
   --> Succeeds due to the check for F's userspace TID field == 0
   --> Claims ownership of the futex and sets its own TID into the
       userspace TID field of futex F
   --> returns to user space

T1 --> exit_pi_state_list()
       --> Transfers pi_state to waiter T2 and wakes T2 via
       	   rt_mutex_unlock(&pi_state->mutex)

T2 --> acquires pi_state->mutex and gains real ownership of the
       pi_state
   --> Claims ownership of the futex and sets its own TID into the
       userspace TID field of futex F
   --> returns to user space

T3 --> observes inconsistent state

This problem is independent of UP/SMP, preemptible/non preemptible
kernels, or process shared vs. private. The only difference is that
certain configurations are more likely to expose it.

So as Siddhesh correctly analyzed the following check in
futex_lock_pi_atomic() is the culprit:

	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {

We check the userspace value for a TID value of 0 and take over the
futex unconditionally if that's true.

AFAICT this check is there as it is correct for a different corner
case of futexes: the WAITERS bit became stale.

Now the proposed change

-	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
+       if (unlikely(ownerdied ||
+                       !(curval & (FUTEX_TID_MASK | FUTEX_WAITERS)))) {

solves the problem, but it's not obvious why and it wreckages the
"stale WAITERS bit" case.

What happens is, that due to the WAITERS bit being set (T2 is blocked
on that futex) it enforces T3 to go through lookup_pi_state(), which
in the above case returns an existing pi_state and therefor forces T3
to legitimately fight with T2 over the ownership of the pi_state (via
pi_state->mutex). Probelm solved!

Though that does not work for the "WAITERS bit is stale" problem
because if lookup_pi_state() does not find existing pi_state it
returns -ERSCH (due to TID == 0) which causes futex_lock_pi() to
return -ESRCH to user space because the OWNER_DIED bit is not set.

Now there is a different solution to that problem. Do not look at the
user space value at all and enforce a lookup of possibly available
pi_state. If pi_state can be found, then the new incoming locker T3
blocks on that pi_state and legitimately races with T2 to acquire the
rt_mutex and the pi_state and therefor the proper ownership of the
user space futex.

lookup_pi_state() has the correct order of checks. It first tries to
find a pi_state associated with the user space futex and only if that
fails it checks for futex TID value = 0. If no pi_state is available
nothing can create new state at that point because this happens with
the hash bucket lock held.

So the above scenario changes to:

T1 lock_futex_pi(F);

T2 lock_futex_pi(F);
   --> T2 blocks on the futex and creates pi_state which is associated
       to T1.

T1 exits
   --> exit_robust_list() runs
       --> Futex F userspace value TID field is set to 0 and
           FUTEX_OWNER_DIED bit is set.

T3 lock_futex_pi(F);
   --> Finds pi_state and blocks on pi_state->rt_mutex

T1 --> exit_pi_state_list()
       --> Transfers pi_state to waiter T2 and wakes it via
       	   rt_mutex_unlock(&pi_state->mutex)

T2 --> acquires pi_state->mutex and gains ownership of the pi_state
   --> Claims ownership of the futex and sets its own TID into the
       userspace TID field of futex F
   --> returns to user space

This covers all gazillion points on which T3 might come in between
T1's exit_robust_list() clearing the TID field and T2 fixing it up. It
also solves the "WAITERS bit stale" problem by forcing the take over.

Another benefit of changing the code this way is that it makes it less
dependent on untrusted user space values and therefor minimizes the
possible wreckage which might be inflicted.

As usual after staring for too long at the futex code my brain hurts
so much that I really want to ditch that whole optimization of
avoiding the syscall for the non contended case for PI futexes and rip
out the maze of corner case handling code. Unfortunately we can't as
user space relies on that existing behaviour, but at least thinking
about it helps me to preserve my mental sanity. Maybe we should
nevertheless :)

Reported-and-tested-by: Siddhesh Poyarekar <siddhesh.poyarekar@gmail.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1210232138540.2756@ionos
Acked-by: Darren Hart <dvhart@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-11-01 12:06:54 +01:00
Vaibhav Nagarnaik
6f86ab9fca tracing: Cleanup unnecessary function declarations
The functions defined in include/trace/syscalls.h are not used directly
since struct ftrace_event_class was introduced. Remove them from the
header file and rearrange the ftrace_event_class declarations in
trace_syscalls.c.

Link: http://lkml.kernel.org/r/1339112785-21806-2-git-send-email-vnagarnaik@google.com

Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:34 -04:00
David Sharp
01e3e710a9 tracing: Trivial cleanup
Remove ftrace_format_syscall() declaration; it is neither defined nor
used. Also update a comment and formatting.

Link: http://lkml.kernel.org/r/1339112785-21806-1-git-send-email-vnagarnaik@google.com

Signed-off-by: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:33 -04:00
Steven Rostedt
7ffbd48d5c tracing: Cache comms only after an event occurred
Whenever an event is registered, the comm of tasks are saved at
every task switch instead of saving them at every event. But if
an event isn't executed much, the comm cache will be filled up
by tasks that did not record the event and you lose out on the comms
that did.

Here's an example, if you enable the following events:

echo 1 > /debug/tracing/events/kvm/kvm_cr/enable
echo 1 > /debug/tracing/events/net/net_dev_xmit/enable

Note, there's no kvm running on this machine so the first event will
never be triggered, but because it is enabled, the storing of comms
will continue. If we now disable the network event:

echo 0 > /debug/tracing/events/net/net_dev_xmit/enable

and look at the trace:

cat /debug/tracing/trace
            sshd-2672  [001] ..s2   375.731616: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s1   375.731617: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s2   375.859356: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s1   375.859357: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s2   375.947351: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s1   375.947352: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s2   376.035383: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s1   376.035383: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
            sshd-2672  [001] ..s2   377.563806: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=226 rc=0
            sshd-2672  [001] ..s1   377.563807: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=226 rc=0
            sshd-2672  [001] ..s2   377.563834: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6be0 len=114 rc=0
            sshd-2672  [001] ..s1   377.563842: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6be0 len=114 rc=0

We see that process 2672 which triggered the events has the comm "sshd".
But if we run hackbench for a bit and look again:

cat /debug/tracing/trace
           <...>-2672  [001] ..s2   375.731616: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s1   375.731617: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s2   375.859356: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s1   375.859357: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s2   375.947351: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s1   375.947352: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s2   376.035383: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s1   376.035383: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=242 rc=0
           <...>-2672  [001] ..s2   377.563806: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6de0 len=226 rc=0
           <...>-2672  [001] ..s1   377.563807: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6de0 len=226 rc=0
           <...>-2672  [001] ..s2   377.563834: net_dev_xmit: dev=eth0 skbaddr=ffff88005cbb6be0 len=114 rc=0
           <...>-2672  [001] ..s1   377.563842: net_dev_xmit: dev=br0 skbaddr=ffff88005cbb6be0 len=114 rc=0

The stored "sshd" comm has been flushed out and we get a useless "<...>".

But by only storing comms after a trace event occurred, we can run
hackbench all day and still get the same output.

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:31 -04:00
Steven Rostedt
2b70e59043 tracing: Have tracing_sched_wakeup_trace() use standard unlock_commit
The functon tracing_sched_wakeup_trace() does an open coded unlock
commit and save stack. This is what the trace_nowake_buffer_unlock_commit()
is for.

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:30 -04:00
Steven Rostedt
81698831bc tracing: Enable comm recording if trace_printk() is used
If comm recording is not enabled when trace_printk() is used then
you just get this type of output:

[ adding trace_printk("hello! %d", irq); in do_IRQ ]

           <...>-2843  [001] d.h.    80.812300: do_IRQ: hello! 14
           <...>-2734  [002] d.h2    80.824664: do_IRQ: hello! 14
           <...>-2713  [003] d.h.    80.829971: do_IRQ: hello! 14
           <...>-2814  [000] d.h.    80.833026: do_IRQ: hello! 14

By enabling the comm recorder when trace_printk is enabled:

       hackbench-6715  [001] d.h.   193.233776: do_IRQ: hello! 21
            sshd-2659  [001] d.h.   193.665862: do_IRQ: hello! 21
          <idle>-0     [001] d.h1   193.665996: do_IRQ: hello! 21

Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:29 -04:00
Steven Rostedt
b382ede6b5 tracing: Expand ring buffer when trace_printk() is used
Since tracing is not used by 99% of Linux users, even though tracing
may be configured in, it does not make sense to allocate 1.4 Megs
per CPU for the ring buffers if they are not used. Thus, on boot up
the ring buffers are set to a minimal size until something needs the
and they are expanded.

This works well for events and tracers (function, etc), but for the
asynchronous use of trace_printk() which can write to the ring buffer
at any time, does not expand the buffers.

On boot up a check is made to see if any trace_printk() is used to
see if the trace_printk() temp buffer pages should be allocated. This
same code can be used to expand the buffers as well.

Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:28 -04:00
Slava Pestov
884bfe89a4 ring-buffer: Add a 'dropped events' counter
The existing 'overrun' counter is incremented when the ring
buffer wraps around, with overflow on (the default). We wanted
a way to count requests lost from the buffer filling up with
overflow off, too. I decided to add a new counter instead
of retro-fitting the existing one because it seems like a
different statistic to count conceptually, and also because
of how the code was structured.

Link: http://lkml.kernel.org/r/1310765038-26399-1-git-send-email-slavapestov@google.com

Signed-off-by: Slava Pestov <slavapestov@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:27 -04:00
Hiraku Toyooka
f43c738bfa tracing: Change tracer's integer flags to bool
print_max and use_max_tr in struct tracer are "int" variables and
used like flags. This is wasteful, so change the type to "bool".

Link: http://lkml.kernel.org/r/20121002082710.9807.86393.stgit@falsita

Signed-off-by: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:25 -04:00
Steven Rostedt
6f4156723c tracing: Allow tracers to start at core initcall
There's times during debugging that it is helpful to see traces of early
boot functions. But the tracers are initialized at device_initcall()
which is quite late during the boot process. Setting the kernel command
line parameter ftrace=function will not show anything until the function
tracer is initialized. This prevents being able to trace functions before
device_initcall().

There's no reason that the tracers need to be initialized so late in the
boot process. Move them up to core_initcall() as they still need to come
after early_initcall() which initializes the tracing buffers.

Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:24 -04:00
Daniel Walter
bcd83ea6cb tracing: Replace strict_strto* with kstrto*
* remove old string conversions with kstrto*

Link: http://lkml.kernel.org/r/20120926200838.GC1244@0x90.at

Signed-off-by: Daniel Walter <sahne@0x90.at>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-10-31 16:45:23 -04:00
Rusty Russell
59ef28b1f1 module: fix out-by-one error in kallsyms
Masaki found and patched a kallsyms issue: the last symbol in a
module's symtab wasn't transferred.  This is because we manually copy
the zero'th entry (which is always empty) then copy the rest in a loop
starting at 1, though from src[0].  His fix was minimal, I prefer to
rewrite the loops in more standard form.

There are two loops: one to get the size, and one to copy.  Make these
identical: always count entry 0 and any defined symbol in an allocated
non-init section.

This bug exists since the following commit was introduced.
   module: reduce symbol table for loaded modules (v2)
   commit: 4a4962263f07d14660849ec134ee42b63e95ea9a

LKML: http://lkml.org/lkml/2012/10/24/27
Reported-by: Masaki Kimura <masaki.kimura.kz@hitachi.com>
Cc: stable@kernel.org
2012-10-31 13:56:37 +10:30
Mike Galbraith
5258f386ea sched/autogroup: Fix crash on reboot when autogroup is disabled
Due to these two commits:

  8323f26ce342 sched: Fix race in task_group()
  800d4d30c8f2 sched, autogroup: Stop going ahead if autogroup is disabled

... autogroup scheduling's dynamic knobs are wrecked.

With both patches applied, all you have to do to crash a box is
disable autogroup during boot up, then reboot.. boom, NULL pointer
dereference due to 800d4d30 not allowing autogroup to move things,
and 8323f26ce making that the only way to switch runqueues.

Remove most of the (dysfunctional) knobs and turn the remaining
sched_autogroup_enabled knob readonly.

If the user fiddles with cgroups hereafter, once tasks
are moved, autogroup won't mess with them again unless
they call setsid().

No knobs, no glitz, nada, just a cute little thing folks can
turn on if they don't want to muck about with cgroups and/or
systemd.

Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Xiaotian Feng <xtfeng@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xiaotian Feng <dannyfeng@tencent.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org> # v3.6
Link: http://lkml.kernel.org/r/1351451963.4999.8.camel@maggy.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-30 10:26:04 +01:00
Michael Neuling
0d855354ea perf, powerpc: Fix hw breakpoints returning -ENOSPC
I've been trying to get hardware breakpoints with perf to work
on POWER7 but I'm getting the following:

  % perf record -e mem:0x10000000 true

    Error: sys_perf_event_open() syscall returned with 28 (No space left on device).  /bin/dmesg may provide additional information.

    Fatal: No CONFIG_PERF_EVENTS=y kernel support configured?

  true: Terminated

(FWIW adding -a and it works fine)

Debugging it seems that __reserve_bp_slot() is returning ENOSPC
because it thinks there are no free breakpoint slots on this
CPU.

I have a 2 CPUs, so perf userspace is doing two perf_event_open
syscalls to add a counter to each CPU [1].  The first syscall
succeeds but the second is failing.

On this second syscall, fetch_bp_busy_slots() sets slots.pinned
to be 1, despite there being no breakpoint on this CPU.  This is
because the call the task_bp_pinned, checks all CPUs, rather
than just the current CPU. POWER7 only has one hardware
breakpoint per CPU (ie. HBP_NUM=1), so we return ENOSPC.

The following patch fixes this by checking the associated CPU
for each breakpoint in task_bp_pinned.  I'm not familiar with
this code, so it's provided as a reference to the above issue.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Ellerman <michael@ellerman.id.au>
Cc: Jovi Zhang <bookjovi@gmail.com>
Cc: K Prasad <prasad@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1351268936-2956-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-30 10:07:58 +01:00
Frederic Weisbecker
3e1df4f506 cputime: Separate irqtime accounting from generic vtime
vtime_account() doesn't have the same role in
CONFIG_VIRT_CPU_ACCOUNTING and CONFIG_IRQ_TIME_ACCOUNTING.

In the first case it handles time accounting in any context. In
the second case it only handles irq time accounting.

So when vtime_account() is called from outside vtime_account_irq_*()
this call is pointless to CONFIG_IRQ_TIME_ACCOUNTING.

To fix the confusion, change vtime_account() to irqtime_account_irq()
in CONFIG_IRQ_TIME_ACCOUNTING. This way we ensure future account_vtime()
calls won't waste useless cycles in the irqtime APIs.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-10-29 21:31:32 +01:00
Frederic Weisbecker
fa5058f3b6 cputime: Specialize irq vtime hooks
With CONFIG_VIRT_CPU_ACCOUNTING, when vtime_account()
is called in irq entry/exit, we perform a check on the
context: if we are interrupting the idle task we
account the pending cputime to idle, otherwise account
to system time or its sub-areas: tsk->stime, hardirq time,
softirq time, ...

However this check for idle only concerns the hardirq entry
and softirq entry:

* Hardirq may directly interrupt the idle task, in which case
we need to flush the pending CPU time to idle.

* The idle task may be directly interrupted by a softirq if
it calls local_bh_enable(). There is probably no such call
in any idle task but we need to cover every case. Ksoftirqd
is not concerned because the idle time is flushed on context
switch and softirq in the end of hardirq have the idle time
already flushed from the hardirq entry.

In the other cases we always account to system/irq time:

* On hardirq exit we account the time to hardirq time.
* On softirq exit we account the time to softirq time.

To optimize this and avoid the indirect call to vtime_account()
and the checks it performs, specialize the vtime irq APIs and
only perform the check on irq entry. Irq exit can directly call
vtime_account_system().

CONFIG_IRQ_TIME_ACCOUNTING behaviour doesn't change and directly
maps to its own vtime_account() implementation. One may want
to take benefits from the new APIs to optimize irq time accounting
as well in the future.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-10-29 21:31:32 +01:00
Frederic Weisbecker
11113334d1 vtime: Make vtime_account_system() irqsafe
vtime_account_system() currently has only one caller with
vtime_account() which is irq safe.

Now we are going to call it from other places like kvm where
irqs are not always disabled by the time we account the cputime.

So let's make it irqsafe. The arch implementation part is now
prefixed with "__".

vtime_account_idle() arch implementation is prefixed accordingly
to stay consistent.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
2012-10-29 21:31:31 +01:00
Greg Kroah-Hartman
ca364d8388 Merge 3.7-rc3 into tty-next
This merges the tty changes in 3.7-rc3 into tty-next

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-29 09:00:57 -07:00
Lai Jiangshan
cda4dc8130 rcutorture: Use DEFINE_STATIC_SRCU()
Use DEFINE_STATIC_SRCU() to simplify the rcutorture.c SRCU test code.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-10-27 15:39:20 -07:00
Oleg Nesterov
5d8f72b55c freezer: change ptrace_stop/do_signal_stop to use freezable_schedule()
try_to_freeze_tasks() and cgroup_freezer rely on scheduler locks
to ensure that a task doing STOPPED/TRACED -> RUNNING transition
can't escape freezing. This mostly works, but ptrace_stop() does
not necessarily call schedule(), it can change task->state back to
RUNNING and check freezing() without any lock/barrier in between.

We could add the necessary barrier, but this patch changes
ptrace_stop() and do_signal_stop() to use freezable_schedule().
This fixes the race, freezer_count() and freezer_should_skip()
carefully avoid the race.

And this simplifies the code, try_to_freeze_tasks/update_if_frozen
no longer need to use task_is_stopped_or_traced() checks with the
non trivial assumptions. We can rely on the mechanism which was
specially designed to mark the sleeping task as "frozen enough".

v2: As Tejun pointed out, we can also change get_signal_to_deliver()
and move try_to_freeze() up before 'relock' label.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-10-26 14:27:49 -07:00
Linus Torvalds
2ab3f29ddd Merge branch 'akpm' (Andrew's fixes)
Merge misc fixes from Andrew Morton:
 "18 total.  15 fixes and some updates to a device_cgroup patchset which
  bring it up to date with the version which I should have merged in the
  first place."

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (18 patches)
  fs/compat_ioctl.c: VIDEO_SET_SPU_PALETTE missing error check
  gen_init_cpio: avoid stack overflow when expanding
  drivers/rtc/rtc-imxdi.c: add missing spin lock initialization
  mm, numa: avoid setting zone_reclaim_mode unless a node is sufficiently distant
  pidns: limit the nesting depth of pid namespaces
  drivers/dma/dw_dmac: make driver's endianness configurable
  mm/mmu_notifier: allocate mmu_notifier in advance
  tools/testing/selftests/epoll/test_epoll.c: fix build
  UAPI: fix tools/vm/page-types.c
  mm/page_alloc.c:alloc_contig_range(): return early for err path
  rbtree: include linux/compiler.h for definition of __always_inline
  genalloc: stop crashing the system when destroying a pool
  backlight: ili9320: add missing SPI dependency
  device_cgroup: add proper checking when changing default behavior
  device_cgroup: stop using simple_strtoul()
  device_cgroup: rename deny_all to behavior
  cgroup: fix invalid rcu dereference
  mm: fix XFS oops due to dirty pages without buffers on s390
2012-10-25 16:05:57 -07:00
H. Peter Anvin
2008713c71 Makefile: Documentation for external tool should be correct
If one includes documentation for an external tool, it should be
correct.  This is not:

1. Overriding the input to rngd should typically be neither
   necessary nor desired.  This is especially so since newer
   versions of rngd support a number of different *types* of sources.
2. The default kernel-exported device is called /dev/hwrng not
   /dev/hwrandom nor /dev/hw_random (both of which were used in the
   past; however, kernel and udev seem to have converged on
   /dev/hwrng.)

Overall it is better if the documentation for rngd is kept with rngd
rather than in a kernel Makefile.

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-25 16:00:53 -07:00
Andrew Vagin
f230250577 pidns: limit the nesting depth of pid namespaces
'struct pid' is a "variable sized struct" - a header with an array of
upids at the end.

The size of the array depends on a level (depth) of pid namespaces.  Now a
level of pidns is not limited, so 'struct pid' can be more than one page.

Looks reasonable, that it should be less than a page.  MAX_PIS_NS_LEVEL is
not calculated from PAGE_SIZE, because in this case it depends on
architectures, config options and it will be reduced, if someone adds a
new fields in struct pid or struct upid.

I suggest to set MAX_PIS_NS_LEVEL = 32, because it saves ability to expand
"struct pid" and it's more than enough for all known for me use-cases.
When someone finds a reasonable use case, we can add a config option or a
sysctl parameter.

In addition it will reduce the effect of another problem, when we have
many nested namespaces and the oldest one starts dying.
zap_pid_ns_processe will be called for each namespace and find_vpid will
be called for each process in a namespace.  find_vpid will be called
minimum max_level^2 / 2 times.  The reason of that is that when we found a
bit in pidmap, we can't determine this pidns is top for this process or it
isn't.

vpid is a heavy operation, so a fork bomb, which create many nested
namespace, can make a system inaccessible for a long time.  For example my
system becomes inaccessible for a few minutes with 4000 processes.

[akpm@linux-foundation.org: return -EINVAL in response to excessive nesting, not -ENOMEM]
Signed-off-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-25 14:37:53 -07:00
Jovi Zhang
0d13ac96b9 uprobes: Fix misleading log entry
There don't have any 'r' prefix in uprobe event naming, remove it.

Signed-off-by: Jovi Zhang <bookjovi@gmail.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
2012-10-25 16:02:51 +02:00
Linus Torvalds
cbb525b447 Merge branch 'for-3.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
 "This pull request contains three fixes.

  Two are reverts of task_lock() removal in cgroup fork path.  The
  optimizations incorrectly assumed that threadgroup_lock can protect
  process forks (as opposed to thread creations) too.  Further cleanup
  of cgroup fork path is scheduled.

  The third fixes cgroup emptiness notification loss."

* 'for-3.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  Revert "cgroup: Remove task_lock() from cgroup_post_fork()"
  Revert "cgroup: Drop task_lock(parent) on cgroup_fork()"
  cgroup: notify_on_release may not be triggered in some cases
2012-10-24 16:35:13 -07:00
Linus Torvalds
d579a35d0e Merge branch 'for-3.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fix from Tejun Heo:
 "This pull request contains one patch from Dan Magenheimer to fix
  cancel_delayed_work() regression introduced by its reimplementation
  using try_to_grab_pending().  The reimplementation made it incorrectly
  return %true when the work item is idle.

  There aren't too many consumers of the return value but it broke at
  least ramster."

* 'for-3.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: cancel_delayed_work() should return %false if work item is idle
2012-10-24 16:33:22 -07:00
Dan Magenheimer
c0158ca64d workqueue: cancel_delayed_work() should return %false if work item is idle
57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.

try_to_grab_pending() indicates that the target work item was idle by
zero return value.  Use it for return.  Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.

Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>
2012-10-24 12:38:16 -07:00
Alan Cox
8ae763cd7e audit: remove bogus tty name check
tty name is an array not a pointer

Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-24 11:34:51 -07:00
Cyrill Gorcunov
99fb4a122e lockdep: Use KSYM_NAME_LEN'ed buffer for __get_key_name()
Not a big deal, but since other __get_key_name() callers
use it lets be consistent.

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20121020190519.GH25467@moon
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 12:39:09 +02:00
Peter Zijlstra
e9c84cb8d5 sched: Describe CFS load-balancer
Add some scribbles on how and why the load-balancer works..

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1341316406.23484.64.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:33 +02:00
Paul Turner
f4e26b120b sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.

These facilities are not yet consumers of this data.  This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:31 +02:00
Paul Turner
5b51f2f80b sched: Make __update_entity_runnable_avg() fast
__update_entity_runnable_avg forms the core of maintaining an entity's runnable
load average.  In this function we charge the accumulated run-time since last
update and handle appropriate decay.  In some cases, e.g. a waking task, this
time interval may be much larger than our period unit.

Fortunately we can exploit some properties of our series to perform decay for a
blocked update in constant time and account the contribution for a running
update in essentially-constant* time.

[*]: For any running entity they should be performing updates at the tick which
gives us a soft limit of 1 jiffy between updates, and we can compute up to a
32 jiffy update in a single pass.

C program to generate the magic constants in the arrays:

  #include <math.h>
  #include <stdio.h>

  #define N 32
  #define WMULT_SHIFT 32

  const long WMULT_CONST = ((1UL << N) - 1);
  double y;

  long runnable_avg_yN_inv[N];
  void calc_mult_inv() {
  	int i;
  	double yn = 0;

  	printf("inverses\n");
  	for (i = 0; i < N; i++) {
  		yn = (double)WMULT_CONST * pow(y, i);
  		runnable_avg_yN_inv[i] = yn;
  		printf("%2d: 0x%8lx\n", i, runnable_avg_yN_inv[i]);
  	}
  	printf("\n");
  }

  long mult_inv(long c, int n) {
  	return (c * runnable_avg_yN_inv[n]) >>  WMULT_SHIFT;
  }

  void calc_yn_sum(int n)
  {
  	int i;
  	double sum = 0, sum_fl = 0, diff = 0;

  	/*
  	 * We take the floored sum to ensure the sum of partial sums is never
  	 * larger than the actual sum.
  	 */
  	printf("sum y^n\n");
  	printf("   %8s  %8s %8s\n", "exact", "floor", "error");
  	for (i = 1; i <= n; i++) {
  		sum = (y * sum + y * 1024);
  		sum_fl = floor(y * sum_fl+ y * 1024);
  		printf("%2d: %8.0f  %8.0f %8.0f\n", i, sum, sum_fl,
  			sum_fl - sum);
  	}
  	printf("\n");
  }

  void calc_conv(long n) {
  	long old_n;
  	int i = -1;

  	printf("convergence (LOAD_AVG_MAX, LOAD_AVG_MAX_N)\n");
  	do {
  		old_n = n;
  		n = mult_inv(n, 1) + 1024;
  		i++;
  	} while (n != old_n);
  	printf("%d> %ld\n", i - 1, n);
  	printf("\n");
  }

  void main() {
  	y = pow(0.5, 1/(double)N);
  	calc_mult_inv();
  	calc_conv(1024);
  	calc_yn_sum(N);
  }

[ Compile with -lm ]
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.277808946@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:30 +02:00
Paul Turner
f269ae0469 sched: Update_cfs_shares at period edge
Now that our measurement intervals are small (~1ms) we can amortize the posting
of update_shares() to be about each period overflow.  This is a large cost
saving for frequently switching tasks.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.200772172@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:29 +02:00
Paul Turner
48a1675323 sched: Refactor update_shares_cpu() -> update_blocked_avgs()
Now that running entities maintain their own load-averages the work we must do
in update_shares() is largely restricted to the periodic decay of blocked
entities.  This allows us to be a little less pessimistic regarding our
occupancy on rq->lock and the associated rq->clock updates required.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.133999170@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:28 +02:00
Paul Turner
82958366cf sched: Replace update_shares weight distribution with per-entity computation
Now that the machinery in place is in place to compute contributed load in a
bottom up fashion; replace the shares distribution code within update_shares()
accordingly.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.061208672@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:28 +02:00
Paul Turner
f1b17280ef sched: Maintain runnable averages across throttled periods
With bandwidth control tracked entities may cease execution according to user
specified bandwidth limits.  Charging this time as either throttled or blocked
however, is incorrect and would falsely skew in either direction.

What we actually want is for any throttled periods to be "invisible" to
load-tracking as they are removed from the system for that interval and
contribute normally otherwise.

Do this by moderating the progression of time to omit any periods in which the
entity belonged to a throttled hierarchy.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.998912151@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:27 +02:00
Paul Turner
bb17f65571 sched: Normalize tg load contributions against runnable time
Entities of equal weight should receive equitable distribution of cpu time.
This is challenging in the case of a task_group's shares as execution may be
occurring on multiple cpus simultaneously.

To handle this we divide up the shares into weights proportionate with the load
on each cfs_rq.  This does not however, account for the fact that the sum of
the parts may be less than one cpu and so we need to normalize:
  load(tg) = min(runnable_avg(tg), 1) * tg->shares
Where runnable_avg is the aggregate time in which the task_group had runnable
children.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.930124292@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:26 +02:00
Paul Turner
8165e145ce sched: Compute load contribution by a group entity
Unlike task entities who have a fixed weight, group entities instead own a
fraction of their parenting task_group's shares as their contributed weight.

Compute this fraction so that we can correctly account hierarchies and shared
entity nodes.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.855074415@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:25 +02:00
Paul Turner
c566e8e9e4 sched: Aggregate total task_group load
Maintain a global running sum of the average load seen on each cfs_rq belonging
to each task group so that it may be used in calculating an appropriate
shares:weight distribution.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.792901086@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:24 +02:00
Paul Turner
aff3e49884 sched: Account for blocked load waking back up
When a running entity blocks we migrate its tracked load to
cfs_rq->blocked_runnable_avg.  In the sleep case this occurs while holding
rq->lock and so is a natural transition.  Wake-ups however, are potentially
asynchronous in the presence of migration and so special care must be taken.

We use an atomic counter to track such migrated load, taking care to match this
with the previously introduced decay counters so that we don't migrate too much
load.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.726077467@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:23 +02:00
Paul Turner
0a74bef8be sched: Add an rq migration call-back to sched_class
Since we are now doing bottom up load accumulation we need explicit
notification when a task has been re-parented so that the old hierarchy can be
updated.

Adds: migrate_task_rq(struct task_struct *p, int next_cpu)

(The alternative is to do this out of __set_task_cpu, but it was suggested that
this would be a cleaner encapsulation.)

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.660023400@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:23 +02:00
Paul Turner
9ee474f556 sched: Maintain the load contribution of blocked entities
We are currently maintaining:

  runnable_load(cfs_rq) = \Sum task_load(t)

For all running children t of cfs_rq.  While this can be naturally updated for
tasks in a runnable state (as they are scheduled); this does not account for
the load contributed by blocked task entities.

This can be solved by introducing a separate accounting for blocked load:

  blocked_load(cfs_rq) = \Sum runnable(b) * weight(b)

Obviously we do not want to iterate over all blocked entities to account for
their decay, we instead observe that:

  runnable_load(t) = \Sum p_i*y^i

and that to account for an additional idle period we only need to compute:

  y*runnable_load(t).

This means that we can compute all blocked entities at once by evaluating:

  blocked_load(cfs_rq)` = y * blocked_load(cfs_rq)

Finally we maintain a decay counter so that when a sleeping entity re-awakens
we can determine how much of its load should be removed from the blocked sum.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.585389902@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:22 +02:00
Paul Turner
2dac754e10 sched: Aggregate load contributed by task entities on parenting cfs_rq
For a given task t, we can compute its contribution to load as:

  task_load(t) = runnable_avg(t) * weight(t)

On a parenting cfs_rq we can then aggregate:

  runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t

Maintain this bottom up, with task entities adding their contributed load to
the parenting cfs_rq sum.  When a task entity's load changes we add the same
delta to the maintained sum.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.514678907@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:21 +02:00
Ben Segall
18bf2805d9 sched: Maintain per-rq runnable averages
Since runqueues do not have a corresponding sched_entity we instead embed a
sched_avg structure directly.

Signed-off-by: Ben Segall <bsegall@google.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.442637130@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:20 +02:00