android_kernel_samsung_univ.../block/Makefile

36 lines
1.3 KiB
Makefile
Raw Normal View History

#
# Makefile for the kernel block layer
#
obj-$(CONFIG_BLOCK) := bio.o elevator.o blk-core.o blk-tag.o blk-sysfs.o \
blk-flush.o blk-settings.o blk-ioc.o blk-map.o \
blk-exec.o blk-merge.o blk-softirq.o blk-timeout.o \
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 08:20:05 +00:00
blk-iopoll.o blk-lib.o blk-mq.o blk-mq-tag.o \
blk-mq-sysfs.o blk-mq-cpu.o blk-mq-cpumap.o ioctl.o \
genhd.o scsi_ioctl.o partition-generic.o ioprio.o \
partitions/
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_BLK_DEV_BSG) += bsg.o
obj-$(CONFIG_BLK_DEV_BSGLIB) += bsg-lib.o
obj-$(CONFIG_BLK_CGROUP) += blk-cgroup.o
obj-$(CONFIG_BLK_DEV_THROTTLING) += blk-throttle.o
obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o
obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o
obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o
obj-$(CONFIG_IOSCHED_FIFO) += fifo-iosched.o
obj-$(CONFIG_IOSCHED_FIOPS) += fiops-iosched.o
obj-$(CONFIG_IOSCHED_SIO) += sio-iosched.o
obj-$(CONFIG_IOSCHED_SIOPLUS) += sioplus-iosched.o
obj-$(CONFIG_IOSCHED_TRIPNDROID)+= tripndroid-iosched.o
obj-$(CONFIG_IOSCHED_VR) += vr-iosched.o
obj-$(CONFIG_IOSCHED_ZEN) += zen-iosched.o
Add BFQ I/O Scheduler. Enable ROW I/Q Scheduler in Makefile. Add the BFQ-v7r8 I/O scheduler to 3.18.0. The general structure is borrowed from CFQ, as much of the code for handling I/O contexts. Over time, several useful features have been ported from CFQ as well (details in the changelog in README.BFQ). A (bfq_)queue is associated to each task doing I/O on a device, and each time a scheduling decision has to be made a queue is selected and served until it expires. - Slices are given in the service domain: tasks are assigned budgets, measured in number of sectors. Once got the disk, a task must however consume its assigned budget within a configurable maximum time (by default, the maximum possible value of the budgets is automatically computed to comply with this timeout). This allows the desired latency vs "throughput boosting" tradeoff to be set. - Budgets are scheduled according to a variant of WF2Q+, implemented using an augmented rb-tree to take eligibility into account while preserving an O(log N) overall complexity. - A low-latency tunable is provided; if enabled, both interactive and soft real-time applications are guaranteed a very low latency. - Latency guarantees are preserved also in the presence of NCQ. - Also with flash-based devices, a high throughput is achieved while still preserving latency guarantees. - BFQ features Early Queue Merge (EQM), a sort of fusion of the cooperating-queue-merging and the preemption mechanisms present in CFQ. EQM is in fact a unified mechanism that tries to get a sequential read pattern, and hence a high throughput, with any set of processes performing interleaved I/O over a contiguous sequence of sectors. - BFQ supports full hierarchical scheduling, exporting a cgroups interface. Since each node has a full scheduler, each group can be assigned its own weight. - If the cgroups interface is not used, only I/O priorities can be assigned to processes, with ioprio values mapped to weights with the relation weight = IOPRIO_BE_NR - ioprio. - ioprio classes are served in strict priority order, i.e., lower priority queues are not served as long as there are higher priority queues. Among queues in the same class the bandwidth is distributed in proportion to the weight of each queue. A very thin extra bandwidth is however guaranteed to the Idle class, to prevent it from starving. Signed-off-by: Paolo Valente <paolo.valente@unimore.it> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Tkkg1994 <luca.grifo@outlook.com> Signed-off-by: djb77 <dwayne.bakewell@gmail.com>
2018-07-19 12:10:48 +00:00
obj-$(CONFIG_IOSCHED_ROW) += row-iosched.o
obj-$(CONFIG_IOSCHED_BFQ) += bfq-iosched.o
obj-$(CONFIG_IOSCHED_MAPLE) += maple-iosched.o
obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o
obj-$(CONFIG_BLK_DEV_INTEGRITY) += bio-integrity.o blk-integrity.o t10-pi.o