/* * CPUFreq governor based on scheduler-provided CPU utilization data. * * Copyright (C) 2016, Intel Corporation * Author: Rafael J. Wysocki * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "sched.h" #include "tune.h" struct sugov_tunables { struct gov_attr_set attr_set; unsigned int rate_limit_us; #ifdef CONFIG_FREQVAR_SCHEDTUNE struct freqvar_boost_data freqvar_boost; #endif }; struct sugov_policy { struct cpufreq_policy *policy; struct sugov_tunables *tunables; struct list_head tunables_hook; raw_spinlock_t update_lock; /* For shared policies */ u64 last_freq_update_time; s64 freq_update_delay_ns; unsigned int next_freq; unsigned int max_util; bool pending; /* The next fields are only needed if fast switch cannot be used. */ struct irq_work irq_work; struct work_struct work; struct mutex work_lock; bool work_in_progress; bool need_freq_update; }; struct sugov_cpu { struct update_util_data update_util; struct sugov_policy *sg_policy; /* The fields below are only needed when sharing a policy. */ unsigned long util; unsigned long max; u64 last_update; }; static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); /************************ Governor internals ***********************/ static unsigned int sugov_next_freq_shared(struct sugov_policy *sg_policy, unsigned long util, unsigned long max); static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) { s64 delta_ns; struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, smp_processor_id()); bool up_scale = (sg_cpu->util > sg_policy->max_util); if (up_scale) { if (!sg_policy->work_in_progress) return true; else { sg_policy->next_freq = sugov_next_freq_shared(sg_policy, sg_cpu->util, sg_cpu->max); sg_policy->pending = true; return false; } } if (sg_policy->work_in_progress) return false; if (unlikely(sg_policy->need_freq_update)) { sg_policy->need_freq_update = false; /* * This happens when limits change, so forget the previous * next_freq value and force an update. */ sg_policy->next_freq = UINT_MAX; return true; } delta_ns = time - sg_policy->last_freq_update_time; return delta_ns >= sg_policy->freq_update_delay_ns; } static int sugov_select_scaling_cpu(void) { int cpu; cpumask_t mask; cpumask_clear(&mask); cpumask_and(&mask, cpu_coregroup_mask(0), cpu_online_mask); /* Idle core of the boot cluster is selected to scaling cpu */ for_each_cpu(cpu, &mask) if (idle_cpu(cpu)) return cpu; return cpumask_weight(&mask) - 1; } static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time, unsigned int next_freq) { sg_policy->last_freq_update_time = time; if (sg_policy->next_freq != next_freq) { sg_policy->next_freq = next_freq; sg_policy->work_in_progress = true; irq_work_queue_on(&sg_policy->irq_work, sugov_select_scaling_cpu()); } } /** * get_next_freq - Compute a new frequency for a given cpufreq policy. * @policy: cpufreq policy object to compute the new frequency for. * @util: Current CPU utilization. * @max: CPU capacity. * * If the utilization is frequency-invariant, choose the new frequency to be * proportional to it, that is * * next_freq = C * max_freq * util / max * * Otherwise, approximate the would-be frequency-invariant utilization by * util_raw * (curr_freq / max_freq) which leads to * * next_freq = C * curr_freq * util_raw / max * * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. */ static unsigned int get_next_freq(struct cpufreq_policy *policy, unsigned long util, unsigned long max) { unsigned int freq = arch_scale_freq_invariant() ? policy->cpuinfo.max_freq : policy->cur; return (freq + (freq >> 2)) * util / max; } static void sugov_update_single(struct update_util_data *hook, u64 time, unsigned long util, unsigned long max) { struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); struct sugov_policy *sg_policy = sg_cpu->sg_policy; struct cpufreq_policy *policy = sg_policy->policy; unsigned int next_f; if (!sugov_should_update_freq(sg_policy, time)) return; next_f = util == ULONG_MAX ? policy->cpuinfo.max_freq : get_next_freq(policy, util, max); trace_sched_freq_commit(time, util, max, next_f); sugov_update_commit(sg_policy, time, next_f); } static unsigned int sugov_next_freq_shared(struct sugov_policy *sg_policy, unsigned long util, unsigned long max) { struct cpufreq_policy *policy = sg_policy->policy; unsigned int max_f = policy->cpuinfo.max_freq; u64 last_freq_update_time = sg_policy->last_freq_update_time; unsigned int j; if (util == ULONG_MAX) goto return_max; for_each_cpu(j, policy->cpus) { struct sugov_cpu *j_sg_cpu; unsigned long j_util, j_max; s64 delta_ns; if (j == smp_processor_id()) continue; j_sg_cpu = &per_cpu(sugov_cpu, j); /* * If the CPU utilization was last updated before the previous * frequency update and the time elapsed between the last update * of the CPU utilization and the last frequency update is long * enough, don't take the CPU into account as it probably is * idle now. */ delta_ns = last_freq_update_time - j_sg_cpu->last_update; if (delta_ns > TICK_NSEC) continue; j_util = j_sg_cpu->util; if (j_util == ULONG_MAX) goto return_max; j_max = j_sg_cpu->max; if (j_util * max > j_max * util) { util = j_util; max = j_max; } } sg_policy->max_util = util; return get_next_freq(policy, util, max); return_max: sg_policy->max_util = max; return max_f; } static void sugov_update_shared(struct update_util_data *hook, u64 time, unsigned long util, unsigned long max) { struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); struct sugov_policy *sg_policy = sg_cpu->sg_policy; unsigned int next_f; raw_spin_lock(&sg_policy->update_lock); sg_cpu->util = util; sg_cpu->max = max; sg_cpu->last_update = time; if (sugov_should_update_freq(sg_policy, time)) { next_f = sugov_next_freq_shared(sg_policy, util, max); trace_sched_freq_commit(time, util, max, next_f); sugov_update_commit(sg_policy, time, next_f); } raw_spin_unlock(&sg_policy->update_lock); } static void sugov_work(struct work_struct *work) { struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); mutex_lock(&sg_policy->work_lock); __cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq, CPUFREQ_RELATION_L); /* if frequency up scaling is in pending, retry scaling */ if (sg_policy->pending) { __cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq, CPUFREQ_RELATION_L); sg_policy->pending = false; } mutex_unlock(&sg_policy->work_lock); sg_policy->work_in_progress = false; } static void sugov_irq_work(struct irq_work *irq_work) { struct sugov_policy *sg_policy; sg_policy = container_of(irq_work, struct sugov_policy, irq_work); schedule_work_on(smp_processor_id(), &sg_policy->work); } /************************** sysfs interface ************************/ static struct sugov_tunables *global_tunables; static DEFINE_MUTEX(global_tunables_lock); static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) { return container_of(attr_set, struct sugov_tunables, attr_set); } static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) { struct sugov_tunables *tunables = to_sugov_tunables(attr_set); return sprintf(buf, "%u\n", tunables->rate_limit_us); } static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) { struct sugov_tunables *tunables = to_sugov_tunables(attr_set); struct sugov_policy *sg_policy; unsigned int rate_limit_us; if (kstrtouint(buf, 10, &rate_limit_us)) return -EINVAL; tunables->rate_limit_us = rate_limit_us; list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; return count; } #ifdef CONFIG_FREQVAR_SCHEDTUNE static unsigned int *get_tokenized_data(const char *buf, int *num_tokens) { const char *cp; int i; int ntokens = 1; unsigned int *tokenized_data; int err = -EINVAL; cp = buf; while ((cp = strpbrk(cp + 1, " :"))) ntokens++; if (!(ntokens & 0x1)) goto err; tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL); if (!tokenized_data) { err = -ENOMEM; goto err; } cp = buf; i = 0; while (i < ntokens) { if (sscanf(cp, "%u", &tokenized_data[i++]) != 1) goto err_kfree; cp = strpbrk(cp, " :"); if (!cp) break; cp++; } if (i != ntokens) goto err_kfree; *num_tokens = ntokens; return tokenized_data; err_kfree: kfree(tokenized_data); err: return ERR_PTR(err); } static ssize_t freqvar_boost_show(struct gov_attr_set *attr_set, char *buf) { struct sugov_tunables *tunables = to_sugov_tunables(attr_set); struct freqvar_boost_data *data = &tunables->freqvar_boost; struct freqvar_boost_table *pos = data->table; int ret = 0; for (; pos->frequency != CPUFREQ_TABLE_END; pos++) ret += sprintf(buf + ret, "%8d ratio:%3d \n", pos->frequency, pos->boost / SCHEDTUNE_LOAD_BOOST_UTIT); return ret; } static ssize_t freqvar_boost_store(struct gov_attr_set *attr_set, const char *buf, size_t count) { struct sugov_tunables *tunables = to_sugov_tunables(attr_set); struct freqvar_boost_data *data = &tunables->freqvar_boost; int *new_table = NULL; int ntokens; new_table = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_table)) return PTR_RET(new_table); schedtune_freqvar_update_table(new_table, ntokens, data->table); kfree(new_table); return count; } static struct governor_attr freqvar_boost = __ATTR_RW(freqvar_boost); #endif /* CONFIG_FREQVAR_SCHEDTUNE */ static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); static struct attribute *sugov_attributes[] = { &rate_limit_us.attr, #ifdef CONFIG_FREQVAR_SCHEDTUNE &freqvar_boost.attr, #endif NULL }; static struct kobj_type sugov_tunables_ktype = { .default_attrs = sugov_attributes, .sysfs_ops = &governor_sysfs_ops, }; /********************** cpufreq governor interface *********************/ struct cpufreq_governor schedutil_gov; static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy; sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); if (!sg_policy) return NULL; sg_policy->policy = policy; init_irq_work(&sg_policy->irq_work, sugov_irq_work); INIT_WORK(&sg_policy->work, sugov_work); mutex_init(&sg_policy->work_lock); raw_spin_lock_init(&sg_policy->update_lock); return sg_policy; } static void sugov_policy_free(struct sugov_policy *sg_policy) { mutex_destroy(&sg_policy->work_lock); kfree(sg_policy); } static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) { struct sugov_tunables *tunables; tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); if (tunables) { gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); if (!have_governor_per_policy()) global_tunables = tunables; } return tunables; } static void sugov_tunables_free(struct sugov_tunables *tunables) { if (!have_governor_per_policy()) global_tunables = NULL; kfree(tunables); } static int sugov_init(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy; struct sugov_tunables *tunables; unsigned int lat; int ret = 0; /* State should be equivalent to EXIT */ if (policy->governor_data) return -EBUSY; sg_policy = sugov_policy_alloc(policy); if (!sg_policy) return -ENOMEM; mutex_lock(&global_tunables_lock); if (global_tunables) { if (WARN_ON(have_governor_per_policy())) { ret = -EINVAL; goto free_sg_policy; } policy->governor_data = sg_policy; sg_policy->tunables = global_tunables; gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); goto out; } tunables = sugov_tunables_alloc(sg_policy); if (!tunables) { ret = -ENOMEM; goto free_sg_policy; } tunables->rate_limit_us = DEFAULT_LATENCY_MULTIPLIER; lat = policy->cpuinfo.transition_latency / NSEC_PER_USEC; if (lat) tunables->rate_limit_us *= lat; /* init freqvar_boost */ schedtune_freqvar_boost_init(policy, &tunables->freqvar_boost); policy->governor_data = sg_policy; sg_policy->tunables = tunables; ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, get_governor_parent_kobj(policy), "%s", schedutil_gov.name); if (ret) goto fail; out: mutex_unlock(&global_tunables_lock); return 0; fail: policy->governor_data = NULL; schedtune_freqvar_boost_exit(policy, &tunables->freqvar_boost); sugov_tunables_free(tunables); free_sg_policy: mutex_unlock(&global_tunables_lock); sugov_policy_free(sg_policy); pr_err("initialization failed (error %d)\n", ret); return ret; } static int sugov_exit(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; struct sugov_tunables *tunables = sg_policy->tunables; unsigned int count; mutex_lock(&global_tunables_lock); count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); policy->governor_data = NULL; if (!count) { schedtune_freqvar_boost_exit(policy, &tunables->freqvar_boost); sugov_tunables_free(tunables); } mutex_unlock(&global_tunables_lock); sugov_policy_free(sg_policy); return 0; } static int sugov_start(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; unsigned int cpu; sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; sg_policy->last_freq_update_time = 0; sg_policy->next_freq = UINT_MAX; sg_policy->max_util = 0; sg_policy->pending = false; sg_policy->work_in_progress = false; sg_policy->need_freq_update = false; for_each_cpu(cpu, policy->cpus) { struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); sg_cpu->sg_policy = sg_policy; if (policy_is_shared(policy)) { sg_cpu->util = 0; sg_cpu->max = 0; sg_cpu->last_update = 0; cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, sugov_update_shared); } else { cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, sugov_update_single); } } return 0; } static int sugov_stop(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; unsigned int cpu; for_each_cpu(cpu, policy->cpus) cpufreq_remove_update_util_hook(cpu); synchronize_sched(); irq_work_sync(&sg_policy->irq_work); cancel_work_sync(&sg_policy->work); return 0; } static int sugov_limits(struct cpufreq_policy *policy) { struct sugov_policy *sg_policy = policy->governor_data; mutex_lock(&sg_policy->work_lock); if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); mutex_unlock(&sg_policy->work_lock); sg_policy->need_freq_update = true; return 0; } int sugov_governor(struct cpufreq_policy *policy, unsigned int event) { if (event == CPUFREQ_GOV_POLICY_INIT) { return sugov_init(policy); } else if (policy->governor_data) { switch (event) { case CPUFREQ_GOV_POLICY_EXIT: return sugov_exit(policy); case CPUFREQ_GOV_START: return sugov_start(policy); case CPUFREQ_GOV_STOP: return sugov_stop(policy); case CPUFREQ_GOV_LIMITS: return sugov_limits(policy); } } return -EINVAL; } struct cpufreq_governor schedutil_gov = { .name = "schedutil", .governor = sugov_governor, .owner = THIS_MODULE, }; static int __init sugov_module_init(void) { return cpufreq_register_governor(&schedutil_gov); } static void __exit sugov_module_exit(void) { cpufreq_unregister_governor(&schedutil_gov); } MODULE_AUTHOR("Rafael J. Wysocki "); MODULE_DESCRIPTION("Utilization-based CPU frequency selection"); MODULE_LICENSE("GPL"); #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL struct cpufreq_governor *cpufreq_default_governor(void) { return &schedutil_gov; } fs_initcall(sugov_module_init); #else module_init(sugov_module_init); #endif module_exit(sugov_module_exit);