3303 lines
79 KiB
C
3303 lines
79 KiB
C
/*
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
* policies)
|
|
*/
|
|
|
|
#include "sched.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/irq_work.h>
|
|
#include <trace/events/sched.h>
|
|
|
|
int sched_rr_timeslice = RR_TIMESLICE;
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
|
|
|
|
struct rt_bandwidth def_rt_bandwidth;
|
|
|
|
unsigned int sched_switch_to_rt_load_ratio;
|
|
unsigned int sched_switch_to_fair_load_ratio;
|
|
|
|
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
|
|
{
|
|
struct rt_bandwidth *rt_b =
|
|
container_of(timer, struct rt_bandwidth, rt_period_timer);
|
|
int idle = 0;
|
|
int overrun;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
for (;;) {
|
|
overrun = hrtimer_forward_now(timer, rt_b->rt_period);
|
|
if (!overrun)
|
|
break;
|
|
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
idle = do_sched_rt_period_timer(rt_b, overrun);
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
}
|
|
if (idle)
|
|
rt_b->rt_period_active = 0;
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
|
|
}
|
|
|
|
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
|
|
{
|
|
rt_b->rt_period = ns_to_ktime(period);
|
|
rt_b->rt_runtime = runtime;
|
|
|
|
raw_spin_lock_init(&rt_b->rt_runtime_lock);
|
|
|
|
hrtimer_init(&rt_b->rt_period_timer,
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
rt_b->rt_period_timer.function = sched_rt_period_timer;
|
|
}
|
|
|
|
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
|
|
return;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
if (!rt_b->rt_period_active) {
|
|
rt_b->rt_period_active = 1;
|
|
hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
|
|
hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
|
|
static void push_irq_work_func(struct irq_work *work);
|
|
#endif
|
|
|
|
void init_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array;
|
|
int i;
|
|
|
|
array = &rt_rq->active;
|
|
for (i = 0; i < MAX_RT_PRIO; i++) {
|
|
INIT_LIST_HEAD(array->queue + i);
|
|
__clear_bit(i, array->bitmap);
|
|
}
|
|
/* delimiter for bitsearch: */
|
|
__set_bit(MAX_RT_PRIO, array->bitmap);
|
|
|
|
#if defined CONFIG_SMP
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
rt_rq->highest_prio.next = MAX_RT_PRIO;
|
|
rt_rq->rt_nr_migratory = 0;
|
|
rt_rq->overloaded = 0;
|
|
plist_head_init(&rt_rq->pushable_tasks);
|
|
atomic_long_set(&rt_rq->removed_util_avg, 0);
|
|
atomic_long_set(&rt_rq->removed_load_avg, 0);
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
rt_rq->push_flags = 0;
|
|
rt_rq->push_cpu = nr_cpu_ids;
|
|
raw_spin_lock_init(&rt_rq->push_lock);
|
|
init_irq_work(&rt_rq->push_work, push_irq_work_func);
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
/* We start is dequeued state, because no RT tasks are queued */
|
|
rt_rq->rt_queued = 0;
|
|
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
rt_rq->rt_runtime = 0;
|
|
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
|
|
{
|
|
hrtimer_cancel(&rt_b->rt_period_timer);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->rt_rq;
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_se->rt_rq;
|
|
|
|
return rt_rq->rq;
|
|
}
|
|
|
|
void free_rt_sched_group(struct task_group *tg)
|
|
{
|
|
int i;
|
|
|
|
if (tg->rt_se)
|
|
destroy_rt_bandwidth(&tg->rt_bandwidth);
|
|
|
|
for_each_possible_cpu(i) {
|
|
if (tg->rt_rq)
|
|
kfree(tg->rt_rq[i]);
|
|
if (tg->rt_se)
|
|
kfree(tg->rt_se[i]);
|
|
}
|
|
|
|
kfree(tg->rt_rq);
|
|
kfree(tg->rt_se);
|
|
}
|
|
|
|
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
rt_rq->rt_nr_boosted = 0;
|
|
rt_rq->rq = rq;
|
|
rt_rq->tg = tg;
|
|
|
|
tg->rt_rq[cpu] = rt_rq;
|
|
tg->rt_se[cpu] = rt_se;
|
|
|
|
if (!rt_se)
|
|
return;
|
|
|
|
if (!parent)
|
|
rt_se->rt_rq = &rq->rt;
|
|
else
|
|
rt_se->rt_rq = parent->my_q;
|
|
|
|
rt_se->my_q = rt_rq;
|
|
rt_se->parent = parent;
|
|
INIT_LIST_HEAD(&rt_se->run_list);
|
|
}
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
struct rt_rq *rt_rq;
|
|
struct sched_rt_entity *rt_se;
|
|
int i;
|
|
|
|
tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
|
|
if (!tg->rt_rq)
|
|
goto err;
|
|
tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
|
|
if (!tg->rt_se)
|
|
goto err;
|
|
|
|
init_rt_bandwidth(&tg->rt_bandwidth,
|
|
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
|
|
|
|
for_each_possible_cpu(i) {
|
|
rt_rq = kzalloc_node(sizeof(struct rt_rq),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_rq)
|
|
goto err;
|
|
|
|
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
if (!rt_se)
|
|
goto err_free_rq;
|
|
|
|
init_rt_rq(rt_rq);
|
|
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
|
|
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
|
|
}
|
|
|
|
return 1;
|
|
|
|
err_free_rq:
|
|
kfree(rt_rq);
|
|
err:
|
|
return 0;
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#define rt_entity_is_task(rt_se) (1)
|
|
|
|
// static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
// {
|
|
// return container_of(rt_se, struct task_struct, rt);
|
|
// }
|
|
|
|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
return container_of(rt_rq, struct rq, rt);
|
|
}
|
|
|
|
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct task_struct *p = rt_task_of(rt_se);
|
|
|
|
return task_rq(p);
|
|
}
|
|
|
|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
return &rq->rt;
|
|
}
|
|
|
|
void free_rt_sched_group(struct task_group *tg) { }
|
|
|
|
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Signed add and clamp on underflow.
|
|
*
|
|
* Explicitly do a load-store to ensure the intermediate value never hits
|
|
* memory. This allows lockless observations without ever seeing the negative
|
|
* values.
|
|
*/
|
|
#define add_positive(_ptr, _val) do { \
|
|
typeof(_ptr) ptr = (_ptr); \
|
|
typeof(_val) val = (_val); \
|
|
typeof(*ptr) res, var = READ_ONCE(*ptr); \
|
|
\
|
|
res = var + val; \
|
|
\
|
|
if (val < 0 && res > var) \
|
|
res = 0; \
|
|
\
|
|
WRITE_ONCE(*ptr, res); \
|
|
} while (0)
|
|
|
|
#define entity_is_task(se) (!se->my_q)
|
|
#define LOAD_AVG_MAX 47742
|
|
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
|
|
|
|
u64 decay_load(u64 val, u64 n);
|
|
u32 __compute_runnable_contrib(u64 n);
|
|
|
|
/*
|
|
* We can represent the historical contribution to runnable average as the
|
|
* coefficients of a geometric series. To do this we sub-divide our runnable
|
|
* history into segments of approximately 1ms (1024us); label the segment that
|
|
* occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
|
|
*
|
|
* [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
|
|
* p0 p1 p2
|
|
* (now) (~1ms ago) (~2ms ago)
|
|
*
|
|
* Let u_i denote the fraction of p_i that the entity was runnable.
|
|
*
|
|
* We then designate the fractions u_i as our co-efficients, yielding the
|
|
* following representation of historical load:
|
|
* u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
|
|
*
|
|
* We choose y based on the with of a reasonably scheduling period, fixing:
|
|
* y^32 = 0.5
|
|
*
|
|
* This means that the contribution to load ~32ms ago (u_32) will be weighted
|
|
* approximately half as much as the contribution to load within the last ms
|
|
* (u_0).
|
|
*
|
|
* When a period "rolls over" and we have new u_0`, multiplying the previous
|
|
* sum again by y is sufficient to update:
|
|
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
|
|
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
|
|
*/
|
|
static __always_inline int
|
|
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
|
|
unsigned long weight, int running, struct rt_rq *rt_rq)
|
|
{
|
|
u64 delta, scaled_delta, periods;
|
|
u32 contrib;
|
|
unsigned int delta_w, scaled_delta_w, decayed = 0;
|
|
unsigned long scale_freq, scale_cpu;
|
|
|
|
delta = now - sa->last_update_time;
|
|
/*
|
|
* This should only happen when time goes backwards, which it
|
|
* unfortunately does during sched clock init when we swap over to TSC.
|
|
*/
|
|
if ((s64)delta < 0) {
|
|
sa->last_update_time = now;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Use 1024ns as the unit of measurement since it's a reasonable
|
|
* approximation of 1us and fast to compute.
|
|
*/
|
|
delta >>= 10;
|
|
if (!delta)
|
|
return 0;
|
|
sa->last_update_time = now;
|
|
|
|
scale_freq = arch_scale_freq_capacity(NULL, cpu);
|
|
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
|
|
|
|
/* delta_w is the amount already accumulated against our next period */
|
|
delta_w = sa->period_contrib;
|
|
if (delta + delta_w >= 1024) {
|
|
decayed = 1;
|
|
|
|
/* how much left for next period will start over, we don't know yet */
|
|
sa->period_contrib = 0;
|
|
|
|
/*
|
|
* Now that we know we're crossing a period boundary, figure
|
|
* out how much from delta we need to complete the current
|
|
* period and accrue it.
|
|
*/
|
|
delta_w = 1024 - delta_w;
|
|
scaled_delta_w = cap_scale(delta_w, scale_freq);
|
|
if (weight)
|
|
sa->load_sum += weight * scaled_delta_w;
|
|
if (running)
|
|
sa->util_sum += scaled_delta_w * scale_cpu;
|
|
|
|
delta -= delta_w;
|
|
|
|
/* Figure out how many additional periods this update spans */
|
|
periods = delta / 1024;
|
|
delta %= 1024;
|
|
|
|
sa->load_sum = decay_load(sa->load_sum, periods + 1);
|
|
sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
|
|
|
|
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
|
|
contrib = __compute_runnable_contrib(periods);
|
|
contrib = cap_scale(contrib, scale_freq);
|
|
if (weight)
|
|
sa->load_sum += weight * contrib;
|
|
if (running)
|
|
sa->util_sum += contrib * scale_cpu;
|
|
}
|
|
|
|
/* Remainder of delta accrued against u_0` */
|
|
scaled_delta = cap_scale(delta, scale_freq);
|
|
if (weight)
|
|
sa->load_sum += weight * scaled_delta;
|
|
if (running)
|
|
sa->util_sum += scaled_delta * scale_cpu;
|
|
|
|
sa->period_contrib += delta;
|
|
|
|
if (decayed) {
|
|
sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
|
|
sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
|
|
}
|
|
|
|
return decayed;
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* Take into account change of utilization of a child task group */
|
|
static inline void
|
|
update_tg_rt_util(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *grt_rq = rt_se->my_q;
|
|
long delta = grt_rq->avg.util_avg - rt_se->avg.util_avg;
|
|
|
|
/* Nothing to update */
|
|
if (!delta)
|
|
return;
|
|
|
|
/* Set new sched_rt_entity's utilization */
|
|
rt_se->avg.util_avg = grt_rq->avg.util_avg;
|
|
rt_se->avg.util_sum = rt_se->avg.util_avg * LOAD_AVG_MAX;
|
|
|
|
/* Update parent rt_rq utilization */
|
|
add_positive(&rt_rq->avg.util_avg, delta);
|
|
rt_rq->avg.util_sum = rt_rq->avg.util_avg * LOAD_AVG_MAX;
|
|
}
|
|
static inline void
|
|
update_tg_rt_load(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *grt_rq = rt_se->my_q;
|
|
long delta = grt_rq->avg.load_avg - rt_se->avg.load_avg;
|
|
|
|
/* Nothing to update */
|
|
if (!delta)
|
|
return;
|
|
|
|
/* Set new sched_rt_entity's load */
|
|
rt_se->avg.load_avg = grt_rq->avg.load_avg;
|
|
rt_se->avg.load_sum = rt_se->avg.load_avg * LOAD_AVG_MAX;
|
|
|
|
/* Update parent rt_rq load */
|
|
add_positive(&rt_rq->avg.load_avg, delta);
|
|
rt_rq->avg.load_sum = rt_rq->avg.load_avg * LOAD_AVG_MAX;
|
|
}
|
|
|
|
static inline int test_and_clear_tg_rt_propagate(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *grt_rq = rt_se->my_q;
|
|
|
|
if (!grt_rq->propagate_avg)
|
|
return 0;
|
|
|
|
grt_rq->propagate_avg = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline void propagate_rt_entity_load_avg(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (entity_is_task(rt_se))
|
|
return;
|
|
if (!test_and_clear_tg_rt_propagate(rt_se))
|
|
return;
|
|
|
|
rt_rq->propagate_avg = 1;
|
|
|
|
update_tg_rt_util(rt_rq, rt_se);
|
|
update_tg_rt_load(rt_rq, rt_se);
|
|
}
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
static inline void propagate_rt_entity_load_avg(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, bool update_freq)
|
|
{
|
|
int decayed, removed_util = 0;
|
|
struct sched_avg *sa = &rt_rq->avg;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct rq *rq = rt_rq->rq;
|
|
#endif
|
|
|
|
if (atomic_long_read(&rt_rq->removed_util_avg)) {
|
|
long r = atomic_long_xchg(&rt_rq->removed_util_avg, 0);
|
|
sa->util_avg = max_t(long, sa->util_avg - r, 0);
|
|
sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
|
|
removed_util = 1;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* Set propagate_avg for task group load propagate */
|
|
rt_rq->propagate_avg = 1;
|
|
#endif
|
|
}
|
|
|
|
if (atomic_long_read(&rt_rq->removed_load_avg)) {
|
|
long r = atomic_long_xchg(&rt_rq->removed_load_avg, 0);
|
|
sa->load_avg = max_t(long, sa->load_avg - r, 0);
|
|
sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* Set propagate_avg for task group load propagate */
|
|
rt_rq->propagate_avg = 1;
|
|
#endif
|
|
}
|
|
|
|
decayed = __update_load_avg(now, cpu, sa, scale_load_down(NICE_0_LOAD),
|
|
rt_rq->curr != NULL, NULL);
|
|
|
|
#ifndef CONFIG_64BIT
|
|
smp_wmb();
|
|
rt_rq->load_last_update_time_copy = sa->last_update_time;
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
if (rt_rq == &rq->rt)
|
|
trace_sched_rt_load_avg_cpu(cpu_of(rq), rt_rq);
|
|
#endif
|
|
|
|
return decayed;
|
|
}
|
|
|
|
void update_rt_load_avg(u64 now, struct sched_rt_entity *rt_se, struct rt_rq *rt_rq, int cpu)
|
|
{
|
|
/*
|
|
* Track task load average for carrying it to new CPU after migrated.
|
|
*/
|
|
if (rt_se->avg.last_update_time)
|
|
__update_load_avg(now, cpu, &rt_se->avg, scale_load_down(NICE_0_LOAD),
|
|
rt_rq->curr == rt_se, NULL);
|
|
|
|
update_rt_rq_load_avg(now, cpu, rt_rq, true);
|
|
propagate_rt_entity_load_avg(rt_se, rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
if (entity_is_task(rt_se))
|
|
trace_sched_rt_load_avg_task(rt_task_of(rt_se), &rt_se->avg);
|
|
#endif
|
|
|
|
}
|
|
|
|
static void pull_rt_task(struct rq *this_rq);
|
|
|
|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
/* Try to pull RT tasks here if we lower this rq's prio */
|
|
return rq->rt.highest_prio.curr > prev->prio;
|
|
}
|
|
|
|
static inline int rt_overloaded(struct rq *rq)
|
|
{
|
|
return atomic_read(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_set_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
|
|
/*
|
|
* Make sure the mask is visible before we set
|
|
* the overload count. That is checked to determine
|
|
* if we should look at the mask. It would be a shame
|
|
* if we looked at the mask, but the mask was not
|
|
* updated yet.
|
|
*
|
|
* Matched by the barrier in pull_rt_task().
|
|
*/
|
|
smp_wmb();
|
|
atomic_inc(&rq->rd->rto_count);
|
|
}
|
|
|
|
static inline void rt_clear_overload(struct rq *rq)
|
|
{
|
|
if (!rq->online)
|
|
return;
|
|
|
|
/* the order here really doesn't matter */
|
|
atomic_dec(&rq->rd->rto_count);
|
|
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
|
|
}
|
|
|
|
static void update_rt_migration(struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
|
|
if (!rt_rq->overloaded) {
|
|
rt_set_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 1;
|
|
}
|
|
} else if (rt_rq->overloaded) {
|
|
rt_clear_overload(rq_of_rt_rq(rt_rq));
|
|
rt_rq->overloaded = 0;
|
|
}
|
|
}
|
|
|
|
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total++;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory++;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!rt_entity_is_task(rt_se))
|
|
return;
|
|
|
|
p = rt_task_of(rt_se);
|
|
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
|
|
|
|
rt_rq->rt_nr_total--;
|
|
if (p->nr_cpus_allowed > 1)
|
|
rt_rq->rt_nr_migratory--;
|
|
|
|
update_rt_migration(rt_rq);
|
|
}
|
|
|
|
static inline int has_pushable_tasks(struct rq *rq)
|
|
{
|
|
return !plist_head_empty(&rq->rt.pushable_tasks);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct callback_head, rt_push_head);
|
|
static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
|
|
|
|
static void push_rt_tasks(struct rq *);
|
|
static void pull_rt_task(struct rq *);
|
|
|
|
static inline void queue_push_tasks(struct rq *rq)
|
|
{
|
|
if (!has_pushable_tasks(rq))
|
|
return;
|
|
|
|
queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
|
|
}
|
|
|
|
static inline void queue_pull_task(struct rq *rq)
|
|
{
|
|
queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
|
|
}
|
|
|
|
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
plist_node_init(&p->pushable_tasks, p->prio);
|
|
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the highest prio pushable task */
|
|
if (p->prio < rq->rt.highest_prio.next)
|
|
rq->rt.highest_prio.next = p->prio;
|
|
}
|
|
|
|
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
|
/* Update the new highest prio pushable task */
|
|
if (has_pushable_tasks(rq)) {
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
rq->rt.highest_prio.next = p->prio;
|
|
} else
|
|
rq->rt.highest_prio.next = MAX_RT_PRIO;
|
|
}
|
|
|
|
#else
|
|
static inline void rt_rq_util_change(struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, bool update_freq)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline
|
|
void update_rt_load_avg(u64 now, struct sched_rt_entity *rt_se, struct rt_rq *rt_rq, int cpu)
|
|
{
|
|
}
|
|
|
|
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
}
|
|
|
|
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pull_rt_task(struct rq *this_rq)
|
|
{
|
|
}
|
|
|
|
static inline void queue_push_tasks(struct rq *rq)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
|
|
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
|
|
|
|
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return !list_empty(&rt_se->run_list);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!rt_rq->tg)
|
|
return RUNTIME_INF;
|
|
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct task_group *rt_rq_iter_t;
|
|
|
|
static inline struct task_group *next_task_group(struct task_group *tg)
|
|
{
|
|
do {
|
|
tg = list_entry_rcu(tg->list.next,
|
|
typeof(struct task_group), list);
|
|
} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
|
|
|
|
if (&tg->list == &task_groups)
|
|
tg = NULL;
|
|
|
|
return tg;
|
|
}
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for (iter = container_of(&task_groups, typeof(*iter), list); \
|
|
(iter = next_task_group(iter)) && \
|
|
(rt_rq = iter->rt_rq[cpu_of(rq)]);)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = rt_se->parent)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return rt_se->my_q;
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
|
|
|
|
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
struct sched_rt_entity *rt_se;
|
|
|
|
int cpu = cpu_of(rq);
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
if (!rt_se)
|
|
enqueue_top_rt_rq(rt_rq);
|
|
else if (!on_rt_rq(rt_se))
|
|
enqueue_rt_entity(rt_se, false);
|
|
|
|
if (rt_rq->highest_prio.curr < curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
int cpu = cpu_of(rq_of_rt_rq(rt_rq));
|
|
|
|
rt_se = rt_rq->tg->rt_se[cpu];
|
|
|
|
if (!rt_se)
|
|
dequeue_top_rt_rq(rt_rq);
|
|
else if (on_rt_rq(rt_se))
|
|
dequeue_rt_entity(rt_se);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
|
|
}
|
|
|
|
static int rt_se_boosted(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
struct task_struct *p;
|
|
|
|
if (rt_rq)
|
|
return !!rt_rq->rt_nr_boosted;
|
|
|
|
p = rt_task_of(rt_se);
|
|
return p->prio != p->normal_prio;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return this_rq()->rd->span;
|
|
}
|
|
#else
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &rt_rq->tg->rt_bandwidth;
|
|
}
|
|
|
|
#else /* !CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_runtime;
|
|
}
|
|
|
|
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
|
|
{
|
|
return ktime_to_ns(def_rt_bandwidth.rt_period);
|
|
}
|
|
|
|
typedef struct rt_rq *rt_rq_iter_t;
|
|
|
|
#define for_each_rt_rq(rt_rq, iter, rq) \
|
|
for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
|
|
|
|
#define for_each_sched_rt_entity(rt_se) \
|
|
for (; rt_se; rt_se = NULL)
|
|
|
|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
if (!rt_rq->rt_nr_running)
|
|
return;
|
|
|
|
enqueue_top_rt_rq(rt_rq);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
|
|
{
|
|
dequeue_top_rt_rq(rt_rq);
|
|
}
|
|
|
|
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_throttled;
|
|
}
|
|
|
|
static inline const struct cpumask *sched_rt_period_mask(void)
|
|
{
|
|
return cpu_online_mask;
|
|
}
|
|
|
|
static inline
|
|
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
|
|
{
|
|
return &cpu_rq(cpu)->rt;
|
|
}
|
|
|
|
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
|
|
{
|
|
return &def_rt_bandwidth;
|
|
}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
return (hrtimer_active(&rt_b->rt_period_timer) ||
|
|
rt_rq->rt_time < rt_b->rt_runtime);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* We ran out of runtime, see if we can borrow some from our neighbours.
|
|
*/
|
|
static void do_balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
|
|
int i, weight;
|
|
u64 rt_period;
|
|
|
|
weight = cpumask_weight(rd->span);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
rt_period = ktime_to_ns(rt_b->rt_period);
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
if (iter == rt_rq)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
/*
|
|
* Either all rqs have inf runtime and there's nothing to steal
|
|
* or __disable_runtime() below sets a specific rq to inf to
|
|
* indicate its been disabled and disalow stealing.
|
|
*/
|
|
if (iter->rt_runtime == RUNTIME_INF)
|
|
goto next;
|
|
|
|
/*
|
|
* From runqueues with spare time, take 1/n part of their
|
|
* spare time, but no more than our period.
|
|
*/
|
|
diff = iter->rt_runtime - iter->rt_time;
|
|
if (diff > 0) {
|
|
diff = div_u64((u64)diff, weight);
|
|
if (rt_rq->rt_runtime + diff > rt_period)
|
|
diff = rt_period - rt_rq->rt_runtime;
|
|
iter->rt_runtime -= diff;
|
|
rt_rq->rt_runtime += diff;
|
|
if (rt_rq->rt_runtime == rt_period) {
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
break;
|
|
}
|
|
}
|
|
next:
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
}
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Ensure this RQ takes back all the runtime it lend to its neighbours.
|
|
*/
|
|
static void __disable_runtime(struct rq *rq)
|
|
{
|
|
struct root_domain *rd = rq->rd;
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
s64 want;
|
|
int i;
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* Either we're all inf and nobody needs to borrow, or we're
|
|
* already disabled and thus have nothing to do, or we have
|
|
* exactly the right amount of runtime to take out.
|
|
*/
|
|
if (rt_rq->rt_runtime == RUNTIME_INF ||
|
|
rt_rq->rt_runtime == rt_b->rt_runtime)
|
|
goto balanced;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
|
|
/*
|
|
* Calculate the difference between what we started out with
|
|
* and what we current have, that's the amount of runtime
|
|
* we lend and now have to reclaim.
|
|
*/
|
|
want = rt_b->rt_runtime - rt_rq->rt_runtime;
|
|
|
|
/*
|
|
* Greedy reclaim, take back as much as we can.
|
|
*/
|
|
for_each_cpu(i, rd->span) {
|
|
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
|
|
s64 diff;
|
|
|
|
/*
|
|
* Can't reclaim from ourselves or disabled runqueues.
|
|
*/
|
|
if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
|
|
continue;
|
|
|
|
raw_spin_lock(&iter->rt_runtime_lock);
|
|
if (want > 0) {
|
|
diff = min_t(s64, iter->rt_runtime, want);
|
|
iter->rt_runtime -= diff;
|
|
want -= diff;
|
|
} else {
|
|
iter->rt_runtime -= want;
|
|
want -= want;
|
|
}
|
|
raw_spin_unlock(&iter->rt_runtime_lock);
|
|
|
|
if (!want)
|
|
break;
|
|
}
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
/*
|
|
* We cannot be left wanting - that would mean some runtime
|
|
* leaked out of the system.
|
|
*/
|
|
BUG_ON(want);
|
|
balanced:
|
|
/*
|
|
* Disable all the borrow logic by pretending we have inf
|
|
* runtime - in which case borrowing doesn't make sense.
|
|
*/
|
|
rt_rq->rt_runtime = RUNTIME_INF;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
|
|
/* Make rt_rq available for pick_next_task() */
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
}
|
|
}
|
|
|
|
static void __enable_runtime(struct rq *rq)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
if (unlikely(!scheduler_running))
|
|
return;
|
|
|
|
/*
|
|
* Reset each runqueue's bandwidth settings
|
|
*/
|
|
for_each_rt_rq(rt_rq, iter, rq) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
raw_spin_lock(&rt_b->rt_runtime_lock);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_runtime = rt_b->rt_runtime;
|
|
rt_rq->rt_time = 0;
|
|
rt_rq->rt_throttled = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
raw_spin_unlock(&rt_b->rt_runtime_lock);
|
|
}
|
|
}
|
|
|
|
static void balance_runtime(struct rt_rq *rt_rq)
|
|
{
|
|
if (!sched_feat(RT_RUNTIME_SHARE))
|
|
return;
|
|
|
|
if (rt_rq->rt_time > rt_rq->rt_runtime) {
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
do_balance_runtime(rt_rq);
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
static inline void balance_runtime(struct rt_rq *rt_rq) {}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
|
|
{
|
|
int i, idle = 1, throttled = 0;
|
|
const struct cpumask *span;
|
|
|
|
span = sched_rt_period_mask();
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* FIXME: isolated CPUs should really leave the root task group,
|
|
* whether they are isolcpus or were isolated via cpusets, lest
|
|
* the timer run on a CPU which does not service all runqueues,
|
|
* potentially leaving other CPUs indefinitely throttled. If
|
|
* isolation is really required, the user will turn the throttle
|
|
* off to kill the perturbations it causes anyway. Meanwhile,
|
|
* this maintains functionality for boot and/or troubleshooting.
|
|
*/
|
|
if (rt_b == &root_task_group.rt_bandwidth)
|
|
span = cpu_online_mask;
|
|
#endif
|
|
for_each_cpu(i, span) {
|
|
int enqueue = 0;
|
|
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
raw_spin_lock(&rq->lock);
|
|
update_rq_clock(rq);
|
|
|
|
if (rt_rq->rt_time) {
|
|
u64 runtime;
|
|
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
if (rt_rq->rt_throttled)
|
|
balance_runtime(rt_rq);
|
|
runtime = rt_rq->rt_runtime;
|
|
rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
|
|
if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
|
|
rt_rq->rt_throttled = 0;
|
|
enqueue = 1;
|
|
|
|
/*
|
|
* When we're idle and a woken (rt) task is
|
|
* throttled check_preempt_curr() will set
|
|
* skip_update and the time between the wakeup
|
|
* and this unthrottle will get accounted as
|
|
* 'runtime'.
|
|
*/
|
|
if (rt_rq->rt_nr_running && rq->curr == rq->idle)
|
|
rq_clock_skip_update(rq, false);
|
|
}
|
|
if (rt_rq->rt_time || rt_rq->rt_nr_running)
|
|
idle = 0;
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
} else if (rt_rq->rt_nr_running) {
|
|
idle = 0;
|
|
if (!rt_rq_throttled(rt_rq))
|
|
enqueue = 1;
|
|
}
|
|
if (rt_rq->rt_throttled)
|
|
throttled = 1;
|
|
|
|
if (enqueue)
|
|
sched_rt_rq_enqueue(rt_rq);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
|
|
return 1;
|
|
|
|
return idle;
|
|
}
|
|
|
|
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
|
|
{
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq)
|
|
return rt_rq->highest_prio.curr;
|
|
#endif
|
|
|
|
return rt_task_of(rt_se)->prio;
|
|
}
|
|
|
|
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
|
|
{
|
|
u64 runtime = sched_rt_runtime(rt_rq);
|
|
|
|
if (rt_rq->rt_throttled)
|
|
return rt_rq_throttled(rt_rq);
|
|
|
|
if (runtime >= sched_rt_period(rt_rq))
|
|
return 0;
|
|
|
|
balance_runtime(rt_rq);
|
|
runtime = sched_rt_runtime(rt_rq);
|
|
if (runtime == RUNTIME_INF)
|
|
return 0;
|
|
|
|
if (rt_rq->rt_time > runtime) {
|
|
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
|
|
|
/*
|
|
* Don't actually throttle groups that have no runtime assigned
|
|
* but accrue some time due to boosting.
|
|
*/
|
|
if (likely(rt_b->rt_runtime)) {
|
|
rt_rq->rt_throttled = 1;
|
|
printk_deferred_once("sched: RT throttling activated\n");
|
|
} else {
|
|
/*
|
|
* In case we did anyway, make it go away,
|
|
* replenishment is a joke, since it will replenish us
|
|
* with exactly 0 ns.
|
|
*/
|
|
rt_rq->rt_time = 0;
|
|
}
|
|
|
|
if (rt_rq_throttled(rt_rq)) {
|
|
sched_rt_rq_dequeue(rt_rq);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static void update_curr_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
struct sched_rt_entity *rt_se = &curr->rt;
|
|
u64 delta_exec;
|
|
|
|
if (curr->sched_class != &rt_sched_class)
|
|
return;
|
|
|
|
/* Kick cpufreq (see the comment in linux/cpufreq.h). */
|
|
if (cpu_of(rq) == smp_processor_id())
|
|
cpufreq_trigger_update(rq_clock(rq));
|
|
|
|
delta_exec = rq_clock_task(rq) - curr->se.exec_start;
|
|
if (unlikely((s64)delta_exec <= 0))
|
|
return;
|
|
|
|
schedstat_set(curr->se.statistics.exec_max,
|
|
max(curr->se.statistics.exec_max, delta_exec));
|
|
|
|
curr->se.sum_exec_runtime += delta_exec;
|
|
account_group_exec_runtime(curr, delta_exec);
|
|
|
|
curr->se.exec_start = rq_clock_task(rq);
|
|
cpuacct_charge(curr, delta_exec);
|
|
|
|
sched_rt_avg_update(rq, delta_exec);
|
|
|
|
if (!rt_bandwidth_enabled())
|
|
return;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
|
|
if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
|
|
raw_spin_lock(&rt_rq->rt_runtime_lock);
|
|
rt_rq->rt_time += delta_exec;
|
|
if (sched_rt_runtime_exceeded(rt_rq))
|
|
resched_curr(rq);
|
|
raw_spin_unlock(&rt_rq->rt_runtime_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dequeue_top_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (!rt_rq->rt_queued)
|
|
return;
|
|
|
|
BUG_ON(!rq->nr_running);
|
|
|
|
sub_nr_running(rq, rt_rq->rt_nr_running);
|
|
rt_rq->rt_queued = 0;
|
|
}
|
|
|
|
static void
|
|
enqueue_top_rt_rq(struct rt_rq *rt_rq)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
BUG_ON(&rq->rt != rt_rq);
|
|
|
|
if (rt_rq->rt_queued)
|
|
return;
|
|
if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
|
|
return;
|
|
|
|
add_nr_running(rq, rt_rq->rt_nr_running);
|
|
rt_rq->rt_queued = 1;
|
|
}
|
|
|
|
#if defined CONFIG_SMP
|
|
|
|
static void
|
|
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && prio < prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
|
|
{
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Change rq's cpupri only if rt_rq is the top queue.
|
|
*/
|
|
if (&rq->rt != rt_rq)
|
|
return;
|
|
#endif
|
|
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
static inline
|
|
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
static inline
|
|
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
static void
|
|
inc_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (prio < prev_prio)
|
|
rt_rq->highest_prio.curr = prio;
|
|
|
|
inc_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
static void
|
|
dec_rt_prio(struct rt_rq *rt_rq, int prio)
|
|
{
|
|
int prev_prio = rt_rq->highest_prio.curr;
|
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
|
WARN_ON(prio < prev_prio);
|
|
|
|
/*
|
|
* This may have been our highest task, and therefore
|
|
* we may have some recomputation to do
|
|
*/
|
|
if (prio == prev_prio) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
|
|
rt_rq->highest_prio.curr =
|
|
sched_find_first_bit(array->bitmap);
|
|
}
|
|
|
|
} else
|
|
rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
|
|
dec_rt_prio_smp(rt_rq, prio, prev_prio);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
|
|
|
|
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted++;
|
|
|
|
if (rt_rq->tg)
|
|
start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
|
|
}
|
|
|
|
static void
|
|
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
if (rt_se_boosted(rt_se))
|
|
rt_rq->rt_nr_boosted--;
|
|
|
|
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
|
|
}
|
|
|
|
#else /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static void
|
|
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
start_rt_bandwidth(&def_rt_bandwidth);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
|
|
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
static inline
|
|
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
|
|
if (group_rq)
|
|
return group_rq->rt_nr_running;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static inline
|
|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
int prio = rt_se_prio(rt_se);
|
|
|
|
WARN_ON(!rt_prio(prio));
|
|
rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
|
|
|
|
inc_rt_prio(rt_rq, prio);
|
|
inc_rt_migration(rt_se, rt_rq);
|
|
inc_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
static inline
|
|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
{
|
|
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
WARN_ON(!rt_rq->rt_nr_running);
|
|
rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
|
|
|
|
dec_rt_prio(rt_rq, rt_se_prio(rt_se));
|
|
dec_rt_migration(rt_se, rt_rq);
|
|
dec_rt_group(rt_se, rt_rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* attach_rt_entity_load_avg - attach this entity to its rt_rq load avg
|
|
* @rt_rq: rt_rq to attach to
|
|
* @rt_se: sched_rt_entity to attach
|
|
*
|
|
* Must call update_rt_rq_load_avg() before this, since we rely on
|
|
* rt_rq->avg.last_update_time being current.
|
|
*
|
|
* load_{avg,sum} are not used by RT
|
|
*/
|
|
static void
|
|
attach_entity_load_avg(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
rt_se->avg.last_update_time = rt_rq->avg.last_update_time;
|
|
rt_rq->avg.util_avg += rt_se->avg.util_avg;
|
|
rt_rq->avg.util_sum += rt_se->avg.util_sum;
|
|
rt_rq->avg.load_avg += rt_se->avg.load_avg;
|
|
rt_rq->avg.load_sum += rt_se->avg.load_sum;
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* Set propagate_avg for task group load propagate */
|
|
rt_rq->propagate_avg = 1;
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* detach_entity_load_avg - detach this entity from its rt_rq load avg
|
|
* @rt_rq: rt_rq to detach from
|
|
* @rt_se: sched_rt_entity to detach
|
|
*
|
|
* Must call update_rt_rq_load_avg() before this, since we rely on
|
|
* rt_rq->avg.last_update_time being current.
|
|
*
|
|
* load_{avg,sum} are not used by RT
|
|
*/
|
|
static void detach_entity_load_avg(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
|
|
{
|
|
rt_rq->avg.util_avg = max_t(long, rt_rq->avg.util_avg - rt_se->avg.util_avg, 0);
|
|
rt_rq->avg.util_sum = max_t(s32, rt_rq->avg.util_sum - rt_se->avg.util_sum, 0);
|
|
rt_rq->avg.load_avg = max_t(long, rt_rq->avg.load_avg - rt_se->avg.load_avg, 0);
|
|
rt_rq->avg.load_sum = max_t(long, rt_rq->avg.load_sum - rt_se->avg.load_sum, 0);
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/* Set propagate_avg for task group load propagate */
|
|
rt_rq->propagate_avg = 1;
|
|
#endif
|
|
}
|
|
#else
|
|
static inline void
|
|
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
|
|
static inline void
|
|
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
|
|
#endif
|
|
|
|
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct rt_rq *group_rq = group_rt_rq(rt_se);
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
/*
|
|
* Don't enqueue the group if its throttled, or when empty.
|
|
* The latter is a consequence of the former when a child group
|
|
* get throttled and the current group doesn't have any other
|
|
* active members.
|
|
*/
|
|
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
|
|
return;
|
|
|
|
if (head)
|
|
list_add(&rt_se->run_list, queue);
|
|
else
|
|
list_add_tail(&rt_se->run_list, queue);
|
|
__set_bit(rt_se_prio(rt_se), array->bitmap);
|
|
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
|
|
if (rt_entity_is_task(rt_se) && !rt_se->avg.last_update_time)
|
|
attach_entity_load_avg(&rq_of_rt_se(rt_se)->rt, rt_se);
|
|
|
|
inc_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
list_del_init(&rt_se->run_list);
|
|
if (list_empty(array->queue + rt_se_prio(rt_se)))
|
|
__clear_bit(rt_se_prio(rt_se), array->bitmap);
|
|
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
|
|
dec_rt_tasks(rt_se, rt_rq);
|
|
}
|
|
|
|
/*
|
|
* Because the prio of an upper entry depends on the lower
|
|
* entries, we must remove entries top - down.
|
|
*/
|
|
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct sched_rt_entity *back = NULL;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_se->back = back;
|
|
back = rt_se;
|
|
}
|
|
|
|
dequeue_top_rt_rq(rt_rq_of_se(back));
|
|
|
|
for (rt_se = back; rt_se; rt_se = rt_se->back) {
|
|
if (on_rt_rq(rt_se))
|
|
__dequeue_rt_entity(rt_se);
|
|
}
|
|
}
|
|
|
|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
dequeue_rt_stack(rt_se);
|
|
for_each_sched_rt_entity(rt_se)
|
|
__enqueue_rt_entity(rt_se, head);
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rq *rq = rq_of_rt_se(rt_se);
|
|
|
|
dequeue_rt_stack(rt_se);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
if (rt_rq && rt_rq->rt_nr_running)
|
|
__enqueue_rt_entity(rt_se, false);
|
|
}
|
|
enqueue_top_rt_rq(&rq->rt);
|
|
}
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void
|
|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
if (flags & ENQUEUE_WAKEUP)
|
|
rt_se->timeout = 0;
|
|
|
|
update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), &rq->rt, 0);
|
|
|
|
enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
|
|
|
|
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_task(rq, p);
|
|
}
|
|
|
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
update_curr_rt(rq);
|
|
dequeue_rt_entity(rt_se);
|
|
|
|
dequeue_pushable_task(rq, p);
|
|
}
|
|
|
|
/*
|
|
* Put task to the head or the end of the run list without the overhead of
|
|
* dequeue followed by enqueue.
|
|
*/
|
|
static void
|
|
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
|
|
{
|
|
if (on_rt_rq(rt_se)) {
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct list_head *queue = array->queue + rt_se_prio(rt_se);
|
|
|
|
if (head)
|
|
list_move(&rt_se->run_list, queue);
|
|
else
|
|
list_move_tail(&rt_se->run_list, queue);
|
|
}
|
|
}
|
|
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq;
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
rt_rq = rt_rq_of_se(rt_se);
|
|
requeue_rt_entity(rt_rq, rt_se, head);
|
|
}
|
|
}
|
|
|
|
static void yield_task_rt(struct rq *rq)
|
|
{
|
|
requeue_task_rt(rq, rq->curr, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int find_lowest_rq(struct task_struct *task);
|
|
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
static int
|
|
select_task_rq_rt_fluid(struct task_struct *p, int cpu, int sd_flag, int flags)
|
|
{
|
|
int target;
|
|
|
|
rcu_read_lock();
|
|
target = find_lowest_rq(p);
|
|
if (target != -1)
|
|
cpu = target;
|
|
rcu_read_unlock();
|
|
|
|
return cpu;
|
|
}
|
|
|
|
static inline void set_victim_flag(struct task_struct *p)
|
|
{
|
|
p->victim_flag = 1;
|
|
}
|
|
|
|
static inline void clear_victim_flag(struct task_struct *p)
|
|
{
|
|
p->victim_flag = 0;
|
|
}
|
|
|
|
static inline bool test_victim_flag(struct task_struct *p)
|
|
{
|
|
if (p->victim_flag)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
#else
|
|
static int
|
|
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
|
|
{
|
|
struct task_struct *curr;
|
|
struct rq *rq;
|
|
|
|
/* For anything but wake ups, just return the task_cpu */
|
|
if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
|
|
goto out;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
rcu_read_lock();
|
|
curr = READ_ONCE(rq->curr); /* unlocked access */
|
|
|
|
/*
|
|
* If the current task on @p's runqueue is an RT task, then
|
|
* try to see if we can wake this RT task up on another
|
|
* runqueue. Otherwise simply start this RT task
|
|
* on its current runqueue.
|
|
*
|
|
* We want to avoid overloading runqueues. If the woken
|
|
* task is a higher priority, then it will stay on this CPU
|
|
* and the lower prio task should be moved to another CPU.
|
|
* Even though this will probably make the lower prio task
|
|
* lose its cache, we do not want to bounce a higher task
|
|
* around just because it gave up its CPU, perhaps for a
|
|
* lock?
|
|
*
|
|
* For equal prio tasks, we just let the scheduler sort it out.
|
|
*
|
|
* Otherwise, just let it ride on the affined RQ and the
|
|
* post-schedule router will push the preempted task away
|
|
*
|
|
* This test is optimistic, if we get it wrong the load-balancer
|
|
* will have to sort it out.
|
|
*/
|
|
if (curr && unlikely(rt_task(curr)) &&
|
|
(curr->nr_cpus_allowed < 2 ||
|
|
curr->prio <= p->prio)) {
|
|
int target = find_lowest_rq(p);
|
|
|
|
/*
|
|
* Don't bother moving it if the destination CPU is
|
|
* not running a lower priority task.
|
|
*/
|
|
if (target != -1 &&
|
|
p->prio < cpu_rq(target)->rt.highest_prio.curr)
|
|
cpu = target;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
out:
|
|
return cpu;
|
|
}
|
|
|
|
static inline bool test_victim_flag(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
static inline void clear_victim_flag(struct task_struct *p)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
/*
|
|
* Called within set_task_rq() right before setting a task's cpu. The
|
|
* caller only guarantees p->pi_lock is held; no other assumptions,
|
|
* including the state of rq->lock, should be made.
|
|
*/
|
|
void set_task_rq_rt(struct sched_rt_entity *rt_se,
|
|
struct rt_rq *prev, struct rt_rq *next)
|
|
{
|
|
if (!sched_feat(ATTACH_AGE_LOAD))
|
|
return;
|
|
/*
|
|
* We are supposed to update the task to "current" time, then its up to
|
|
* date and ready to go to new CPU/cfs_rq. But we have difficulty in
|
|
* getting what current time is, so simply throw away the out-of-date
|
|
* time. This will result in the wakee task is less decayed, but giving
|
|
* the wakee more load sounds not bad.
|
|
*/
|
|
if (rt_se->avg.last_update_time && prev) {
|
|
u64 p_last_update_time;
|
|
u64 n_last_update_time;
|
|
|
|
#ifndef CONFIG_64BIT
|
|
u64 p_last_update_time_copy;
|
|
u64 n_last_update_time_copy;
|
|
|
|
do {
|
|
p_last_update_time_copy = prev->load_last_update_time_copy;
|
|
n_last_update_time_copy = next->load_last_update_time_copy;
|
|
|
|
smp_rmb();
|
|
|
|
p_last_update_time = prev->avg.last_update_time;
|
|
n_last_update_time = next->avg.last_update_time;
|
|
} while (p_last_update_time != p_last_update_time_copy ||
|
|
n_last_update_time != n_last_update_time_copy);
|
|
#else
|
|
p_last_update_time = prev->avg.last_update_time;
|
|
n_last_update_time = next->avg.last_update_time;
|
|
#endif
|
|
__update_load_avg(p_last_update_time, cpu_of(rq_of_rt_rq(prev)),
|
|
&rt_se->avg, 0, 0, NULL);
|
|
|
|
rt_se->avg.last_update_time = n_last_update_time;
|
|
}
|
|
}
|
|
#endif /* CONFIG_RT_GROUP_SCHED */
|
|
|
|
#ifndef CONFIG_64BIT
|
|
static inline u64 rt_rq_last_update_time(struct rt_rq *rt_rq)
|
|
{
|
|
u64 last_update_time_copy;
|
|
u64 last_update_time;
|
|
|
|
do {
|
|
last_update_time_copy = rt_rq->load_last_update_time_copy;
|
|
smp_rmb();
|
|
last_update_time = rt_rq->avg.last_update_time;
|
|
} while (last_update_time != last_update_time_copy);
|
|
|
|
return last_update_time;
|
|
}
|
|
#else
|
|
static inline u64 rt_rq_last_update_time(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->avg.last_update_time;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Synchronize entity load avg of dequeued entity without locking
|
|
* the previous rq.
|
|
*/
|
|
static void sync_entity_load_avg(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
u64 last_update_time;
|
|
|
|
last_update_time = rt_rq_last_update_time(rt_rq);
|
|
__update_load_avg(last_update_time, cpu_of(rq_of_rt_rq(rt_rq)),
|
|
&rt_se->avg, 0, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* Task first catches up with rt_rq, and then subtract
|
|
* itself from the rt_rq (task must be off the queue now).
|
|
*/
|
|
static void remove_entity_load_avg(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
|
|
/*
|
|
* tasks cannot exit without having gone through wake_up_new_task() ->
|
|
* post_init_entity_util_avg() which will have added things to the
|
|
* rt_rq, so we can remove unconditionally.
|
|
*
|
|
* Similarly for groups, they will have passed through
|
|
* post_init_entity_util_avg() before unregister_sched_fair_group()
|
|
* calls this.
|
|
*/
|
|
|
|
sync_entity_load_avg(rt_se);
|
|
atomic_long_add(rt_se->avg.load_avg, &rt_rq->removed_load_avg);
|
|
atomic_long_add(rt_se->avg.util_avg, &rt_rq->removed_util_avg);
|
|
}
|
|
|
|
static void attach_task_rt_rq(struct task_struct *p)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
|
|
attach_entity_load_avg(rt_rq, rt_se);
|
|
}
|
|
|
|
static void detach_task_rt_rq(struct task_struct *p)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
detach_entity_load_avg(rt_rq ,rt_se);
|
|
}
|
|
|
|
static void migrate_task_rq_rt(struct task_struct *p, int next_cpu)
|
|
{
|
|
/*
|
|
* As for fair, we are supposed to update the task to "current" time,
|
|
* then its up to date and ready to go to new CPU/rt_rq. But we have
|
|
* difficulty in getting what current time is, so simply throw away the
|
|
* out-of-date time. This will result in the wakee task is less
|
|
* decayed, but giving the wakee more load sounds not bad.
|
|
*/
|
|
remove_entity_load_avg(&p->rt);
|
|
|
|
/* Tell new CPU we are migrated */
|
|
p->rt.avg.last_update_time = 0;
|
|
|
|
/* We have migrated, no longer consider this task hot */
|
|
p->se.exec_start = 0;
|
|
}
|
|
|
|
static void task_dead_rt(struct task_struct *p)
|
|
{
|
|
remove_entity_load_avg(&p->rt);
|
|
}
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
static void task_move_group_rt(struct task_struct *p)
|
|
{
|
|
detach_task_rt_rq(p);
|
|
set_task_rq(p, task_cpu(p));
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Tell se's rt_rq has been changed -- migrated */
|
|
p->rt.avg.last_update_time = 0;
|
|
#endif
|
|
attach_task_rt_rq(p);
|
|
}
|
|
#endif
|
|
|
|
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Current can't be migrated, useless to reschedule,
|
|
* let's hope p can move out.
|
|
*/
|
|
if (rq->curr->nr_cpus_allowed == 1 ||
|
|
!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
|
|
return;
|
|
|
|
/*
|
|
* p is migratable, so let's not schedule it and
|
|
* see if it is pushed or pulled somewhere else.
|
|
*/
|
|
if (p->nr_cpus_allowed != 1
|
|
&& cpupri_find(&rq->rd->cpupri, p, NULL))
|
|
return;
|
|
|
|
/*
|
|
* There appears to be other cpus that can accept
|
|
* current and none to run 'p', so lets reschedule
|
|
* to try and push current away:
|
|
*/
|
|
requeue_task_rt(rq, p, 1);
|
|
resched_curr(rq);
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
|
|
{
|
|
if (p->prio < rq->curr->prio) {
|
|
resched_curr(rq);
|
|
return;
|
|
} else if (test_victim_flag(p)) {
|
|
requeue_task_rt(rq, p, 1);
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If:
|
|
*
|
|
* - the newly woken task is of equal priority to the current task
|
|
* - the newly woken task is non-migratable while current is migratable
|
|
* - current will be preempted on the next reschedule
|
|
*
|
|
* we should check to see if current can readily move to a different
|
|
* cpu. If so, we will reschedule to allow the push logic to try
|
|
* to move current somewhere else, making room for our non-migratable
|
|
* task.
|
|
*/
|
|
if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
|
|
check_preempt_equal_prio(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
|
|
struct rt_rq *rt_rq)
|
|
{
|
|
struct rt_prio_array *array = &rt_rq->active;
|
|
struct sched_rt_entity *next = NULL;
|
|
struct list_head *queue;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
BUG_ON(idx >= MAX_RT_PRIO);
|
|
|
|
queue = array->queue + idx;
|
|
next = list_entry(queue->next, struct sched_rt_entity, run_list);
|
|
|
|
return next;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void init_rt_entity_runnable_average(struct sched_rt_entity *rt_se)
|
|
{
|
|
struct sched_avg *sa = &rt_se->avg;
|
|
|
|
sa->last_update_time = 0;
|
|
/*
|
|
* sched_avg's period_contrib should be strictly less then 1024, so
|
|
* we give it 1023 to make sure it is almost a period (1024us), and
|
|
* will definitely be update (after enqueue).
|
|
*/
|
|
sa->period_contrib = 1023;
|
|
/*
|
|
* Tasks are intialized with zero load.
|
|
* Load is not actually used by RT.
|
|
*/
|
|
sa->load_avg = 0;
|
|
sa->load_sum = 0;
|
|
/*
|
|
* At this point, util_avg won't be used in select_task_rq_rt anyway
|
|
*/
|
|
sa->util_avg = 0;
|
|
sa->util_sum = 0;
|
|
/* when this task enqueue'ed, it will contribute to its rt_rq's load_avg */
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
void init_rt_entity_runnable_average(struct sched_rt_entity *rt_se) { }
|
|
#endif
|
|
|
|
static struct task_struct *_pick_next_task_rt(struct rq *rq)
|
|
{
|
|
struct sched_rt_entity *rt_se;
|
|
struct task_struct *p;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
do {
|
|
rt_se = pick_next_rt_entity(rq, rt_rq);
|
|
BUG_ON(!rt_se);
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
rt_rq->curr = rt_se;
|
|
rt_rq = group_rt_rq(rt_se);
|
|
} while (rt_rq);
|
|
|
|
p = rt_task_of(rt_se);
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *
|
|
pick_next_task_rt(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
struct task_struct *p;
|
|
struct rt_rq *rt_rq = &rq->rt;
|
|
|
|
if (need_pull_rt_task(rq, prev)) {
|
|
/*
|
|
* This is OK, because current is on_cpu, which avoids it being
|
|
* picked for load-balance and preemption/IRQs are still
|
|
* disabled avoiding further scheduler activity on it and we're
|
|
* being very careful to re-start the picking loop.
|
|
*/
|
|
lockdep_unpin_lock(&rq->lock);
|
|
pull_rt_task(rq);
|
|
lockdep_pin_lock(&rq->lock);
|
|
/*
|
|
* pull_rt_task() can drop (and re-acquire) rq->lock; this
|
|
* means a dl or stop task can slip in, in which case we need
|
|
* to re-start task selection.
|
|
*/
|
|
if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
|
|
rq->dl.dl_nr_running))
|
|
return RETRY_TASK;
|
|
}
|
|
|
|
/*
|
|
* We may dequeue prev's rt_rq in put_prev_task().
|
|
* So, we update time before rt_nr_running check.
|
|
*/
|
|
if (prev->sched_class == &rt_sched_class)
|
|
update_curr_rt(rq);
|
|
|
|
if (!rt_rq->rt_queued)
|
|
return NULL;
|
|
|
|
put_prev_task(rq, prev);
|
|
|
|
p = _pick_next_task_rt(rq);
|
|
|
|
/* The running task is never eligible for pushing */
|
|
dequeue_pushable_task(rq, p);
|
|
|
|
queue_push_tasks(rq);
|
|
|
|
update_rt_rq_load_avg(rq_clock_task(rq), cpu_of(rq), rt_rq,
|
|
rq->curr->sched_class == &rt_sched_class);
|
|
|
|
clear_victim_flag(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
u64 now = rq_clock_task(rq_of_rt_rq(rt_rq));
|
|
|
|
update_curr_rt(rq);
|
|
|
|
/*
|
|
* The previous task needs to be made eligible for pushing
|
|
* if it is still active
|
|
*/
|
|
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
|
|
enqueue_pushable_task(rq, p);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
if (on_rt_rq(rt_se))
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
|
|
rt_rq->curr = NULL;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/* Only try algorithms three times */
|
|
#define RT_MAX_TRIES 3
|
|
|
|
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
|
|
{
|
|
if (!task_running(rq, p) &&
|
|
cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the highest pushable rq's task, which is suitable to be executed
|
|
* on the cpu, NULL otherwise
|
|
*/
|
|
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
|
|
{
|
|
struct plist_head *head = &rq->rt.pushable_tasks;
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
plist_for_each_entry(p, head, pushable_tasks) {
|
|
if (pick_rt_task(rq, p, cpu))
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
|
|
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
unsigned int frt_boost_threshold;
|
|
unsigned int sysctl_sched_restrict_cluster_spill = 0;
|
|
|
|
static inline int weight_from_rtprio(int prio)
|
|
{
|
|
int idx = (prio >> 1);
|
|
|
|
if ((idx << 1) == prio)
|
|
return rtprio_to_weight[idx];
|
|
else
|
|
return ((rtprio_to_weight[idx] + rtprio_to_weight[idx+1]) >> 1);
|
|
}
|
|
|
|
/* Check if cpu is in fastest hmp_domain */
|
|
static inline unsigned int hmp_cpu_is_fastest(int cpu)
|
|
{
|
|
struct list_head *pos;
|
|
|
|
pos = &hmp_cpu_domain(cpu)->hmp_domains;
|
|
return pos == hmp_domains.next;
|
|
}
|
|
|
|
/* Check if cpu is in slowest hmp_domain */
|
|
static inline unsigned int hmp_cpu_is_slowest(int cpu)
|
|
{
|
|
struct list_head *pos;
|
|
|
|
pos = &hmp_cpu_domain(cpu)->hmp_domains;
|
|
return list_is_last(pos, &hmp_domains);
|
|
}
|
|
|
|
|
|
/* Next (slower) hmp_domain relative to cpu */
|
|
static inline struct hmp_domain *hmp_slower_domain(int cpu)
|
|
{
|
|
struct list_head *pos;
|
|
|
|
if (hmp_cpu_is_slowest(cpu))
|
|
return hmp_cpu_domain(cpu);
|
|
|
|
pos = &hmp_cpu_domain(cpu)->hmp_domains;
|
|
return list_entry(pos->next, struct hmp_domain, hmp_domains);
|
|
}
|
|
|
|
/* Previous (faster) hmp_domain relative to cpu */
|
|
static inline struct hmp_domain *hmp_faster_domain(int cpu)
|
|
{
|
|
struct list_head *pos;
|
|
|
|
if (hmp_cpu_is_fastest(cpu))
|
|
return hmp_cpu_domain(cpu);
|
|
|
|
pos = &hmp_cpu_domain(cpu)->hmp_domains;
|
|
|
|
return list_entry(pos->prev, struct hmp_domain, hmp_domains);
|
|
}
|
|
|
|
static int find_victim_rt_rq(struct task_struct *task, struct cpumask *domain_cpu_mask, int *best_cpu)
|
|
{
|
|
int i;
|
|
unsigned long victim_rtweight, target_rtweight, min_rtweight;
|
|
unsigned int victim_cpu_cap, min_cpu_cap = arch_scale_cpu_capacity(NULL, task_cpu(task));
|
|
bool victim_rt = true;
|
|
|
|
target_rtweight = task->rt.avg.util_avg * weight_from_rtprio(task->prio);
|
|
min_rtweight = target_rtweight;
|
|
|
|
for_each_cpu(i, domain_cpu_mask) {
|
|
struct task_struct *victim = cpu_rq(i)->curr;
|
|
|
|
if (victim->nr_cpus_allowed < 2)
|
|
continue;
|
|
|
|
if (!cpumask_test_cpu(i, tsk_cpus_allowed(task)))
|
|
continue;
|
|
|
|
if (rt_task(victim)) {
|
|
victim_cpu_cap = arch_scale_cpu_capacity(NULL, i);
|
|
victim_rtweight = victim->rt.avg.util_avg * weight_from_rtprio(victim->prio);
|
|
|
|
if (min_cpu_cap == victim_cpu_cap) {
|
|
if (victim_rtweight < min_rtweight) {
|
|
min_rtweight = victim_rtweight;
|
|
*best_cpu = i;
|
|
min_cpu_cap = victim_cpu_cap;
|
|
}
|
|
} else {
|
|
/*
|
|
* It's necessary to un-cap the cpu capacity when comparing
|
|
* utilization of each CPU. This is why the Fluid RT tries to give
|
|
* the green light on big CPU to the long-run RT task
|
|
* in accordance with the priority.
|
|
*/
|
|
if (victim_rtweight * min_cpu_cap < min_rtweight * victim_cpu_cap) {
|
|
min_rtweight = victim_rtweight;
|
|
*best_cpu = i;
|
|
min_cpu_cap = victim_cpu_cap;
|
|
}
|
|
}
|
|
} else {
|
|
/* If Non-RT CPU is exist, select it first */
|
|
*best_cpu = i;
|
|
victim_rt = false;
|
|
trace_sched_fluid_victim_rt_cpu(task, victim, *best_cpu, "Victim Normal");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*best_cpu >= 0 && victim_rt) {
|
|
set_victim_flag(cpu_rq(*best_cpu)->curr);
|
|
trace_sched_fluid_victim_rt_cpu(task, cpu_rq(*best_cpu)->curr, *best_cpu, "Victim RT Task");
|
|
}
|
|
|
|
return *best_cpu;
|
|
}
|
|
|
|
static int find_lowest_rq_fluid(struct task_struct *task)
|
|
{
|
|
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
|
|
struct cpumask candidate_mask = CPU_MASK_NONE;
|
|
struct hmp_domain *hmpd = NULL;
|
|
struct cpumask *hmp_cpu_mask;
|
|
int best_cpu = -1;
|
|
int prev_cpu = task_cpu(task);
|
|
int this_cpu = smp_processor_id();
|
|
int boost = false;
|
|
u64 cpu_load, min_load = ULLONG_MAX;
|
|
int i;
|
|
|
|
/* Make sure the mask is initialized first */
|
|
if (unlikely(!lowest_mask))
|
|
return best_cpu;
|
|
|
|
if (task->nr_cpus_allowed == 1)
|
|
return best_cpu; /* No other targets possible */
|
|
|
|
if (task->rt.avg.util_avg > frt_boost_threshold)
|
|
boost = true;
|
|
|
|
cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask);
|
|
|
|
rcu_read_lock();
|
|
|
|
if (sysctl_sched_restrict_cluster_spill) {
|
|
hmpd = hmp_cpu_domain(task_cpu(task));
|
|
} else {
|
|
hmpd = boost ? \
|
|
hmp_faster_domain(task_cpu(task)) : \
|
|
hmp_slower_domain(task_cpu(task));
|
|
}
|
|
|
|
|
|
do {
|
|
hmp_cpu_mask = &hmpd->cpus;
|
|
min_load = ULLONG_MAX;
|
|
|
|
for_each_cpu_and(i, hmp_cpu_mask, lowest_mask) {
|
|
struct task_struct * curr_task = cpu_rq(i)->curr;
|
|
struct sched_domain *sd;
|
|
|
|
sd = rcu_dereference_check_sched_domain(cpu_rq(i)->sd);
|
|
|
|
if (sd->flags & SD_WAKE_AFFINE) {
|
|
if(cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
|
|
rcu_read_unlock();
|
|
return this_cpu;
|
|
}
|
|
}
|
|
|
|
/* Non-RT runqueue has priority for placement */
|
|
if (rt_task(curr_task)) {
|
|
if (curr_task->nr_cpus_allowed > 1)
|
|
cpumask_set_cpu(i, &candidate_mask);
|
|
continue;
|
|
}
|
|
|
|
if (!cpumask_test_cpu(i, tsk_cpus_allowed(task)))
|
|
continue;
|
|
|
|
cpu_load = cpu_util(i);
|
|
|
|
if (cpu_load < min_load ||
|
|
(cpu_load == min_load && i == prev_cpu)) {
|
|
min_load = cpu_load;
|
|
best_cpu = i;
|
|
}
|
|
}
|
|
|
|
/* best non-rt cpu is exist? */
|
|
if (best_cpu != -1) {
|
|
trace_sched_fluid_select_norm_cpu(task, i, cpu_load, min_load, best_cpu);
|
|
break;
|
|
}
|
|
|
|
/* Any lower-prio rt cpu is exist ? */
|
|
if (!cpumask_empty(&candidate_mask)) {
|
|
best_cpu = cpumask_any(&candidate_mask);
|
|
trace_sched_fluid_victim_rt_cpu(task, cpu_rq(best_cpu)->curr, best_cpu, "Victim Candiate RT CPU");
|
|
break;
|
|
}
|
|
|
|
/* Is there available any victim cpu? */
|
|
if (find_victim_rt_rq(task, hmp_cpu_mask, &best_cpu) != -1)
|
|
break;
|
|
|
|
/*
|
|
* If cluster restrict or boost is enabled,
|
|
* We must select cpu of sepecific cluster.
|
|
*/
|
|
if (sysctl_sched_restrict_cluster_spill) {
|
|
best_cpu = cpumask_any_and(hmp_cpu_mask,
|
|
tsk_cpus_allowed(task));
|
|
trace_sched_fluid_victim_rt_cpu(task, cpu_rq(best_cpu)->curr, best_cpu, "Any CPU on Restrict Cluster");
|
|
break;
|
|
}
|
|
|
|
if (((hmp_cpu_is_fastest(cpumask_any(hmp_cpu_mask))) && !boost) ||
|
|
(boost && (hmp_cpu_is_slowest(cpumask_any(hmp_cpu_mask)))))
|
|
break;
|
|
|
|
hmpd = boost ? \
|
|
hmp_slower_domain(cpumask_any(hmp_cpu_mask)) : \
|
|
hmp_faster_domain(cpumask_any(hmp_cpu_mask));
|
|
|
|
} while (!cpumask_empty(&hmpd->cpus));
|
|
|
|
rcu_read_unlock();
|
|
|
|
return best_cpu;
|
|
}
|
|
|
|
static ssize_t show_frt_boost_threshold(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, 10, "%u\n", frt_boost_threshold);
|
|
}
|
|
|
|
static ssize_t store_frt_boost_threshold(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int input;
|
|
|
|
if (!sscanf(buf, "%d", &input))
|
|
return -EINVAL;
|
|
|
|
input = input < 0 ? 0 : input;
|
|
input = input > 1024 ? 1024 : input;
|
|
|
|
frt_boost_threshold = input;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute frt_boost_threshold_attr =
|
|
__ATTR(boost_frt_threshold, 0644, show_frt_boost_threshold,
|
|
store_frt_boost_threshold);
|
|
#endif
|
|
|
|
static ssize_t show_switch_rt_load_ratio(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, 10, "%u\n", sched_switch_to_rt_load_ratio);
|
|
}
|
|
|
|
static ssize_t store_switch_rt_load_ratio(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int input;
|
|
|
|
if (!sscanf(buf, "%d", &input))
|
|
return -EINVAL;
|
|
|
|
input = input < 0 ? 0 : input;
|
|
|
|
sched_switch_to_rt_load_ratio = input;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_switch_fair_load_ratio(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return snprintf(buf, 10, "%u\n", sched_switch_to_fair_load_ratio);
|
|
}
|
|
|
|
static ssize_t store_switch_fair_load_ratio(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int input;
|
|
|
|
if (!sscanf(buf, "%d", &input))
|
|
return -EINVAL;
|
|
|
|
input = input < 0 ? 0 : input;
|
|
|
|
sched_switch_to_fair_load_ratio = input;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute switch_fair_load_ratio_attr =
|
|
__ATTR(switch_fair_load_ratio, 0644, show_switch_fair_load_ratio,
|
|
store_switch_fair_load_ratio);
|
|
|
|
static struct kobj_attribute switch_rt_load_ratio_attr =
|
|
__ATTR(switch_rt_load_ratio, 0644, show_switch_rt_load_ratio,
|
|
store_switch_rt_load_ratio);
|
|
|
|
static int find_lowest_rq(struct task_struct *task)
|
|
{
|
|
struct sched_domain *sd;
|
|
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
|
|
int this_cpu = smp_processor_id();
|
|
int cpu = task_cpu(task);
|
|
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
return find_lowest_rq_fluid(task);
|
|
#endif
|
|
|
|
/* Make sure the mask is initialized first */
|
|
if (unlikely(!lowest_mask))
|
|
return -1;
|
|
|
|
if (task->nr_cpus_allowed == 1)
|
|
return -1; /* No other targets possible */
|
|
|
|
if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
|
|
return -1; /* No targets found */
|
|
|
|
/*
|
|
* At this point we have built a mask of cpus representing the
|
|
* lowest priority tasks in the system. Now we want to elect
|
|
* the best one based on our affinity and topology.
|
|
*
|
|
* We prioritize the last cpu that the task executed on since
|
|
* it is most likely cache-hot in that location.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, lowest_mask))
|
|
return cpu;
|
|
|
|
/*
|
|
* Otherwise, we consult the sched_domains span maps to figure
|
|
* out which cpu is logically closest to our hot cache data.
|
|
*/
|
|
if (!cpumask_test_cpu(this_cpu, lowest_mask))
|
|
this_cpu = -1; /* Skip this_cpu opt if not among lowest */
|
|
|
|
rcu_read_lock();
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & SD_WAKE_AFFINE) {
|
|
int best_cpu;
|
|
|
|
/*
|
|
* "this_cpu" is cheaper to preempt than a
|
|
* remote processor.
|
|
*/
|
|
if (this_cpu != -1 &&
|
|
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
|
|
rcu_read_unlock();
|
|
return this_cpu;
|
|
}
|
|
|
|
best_cpu = cpumask_first_and(lowest_mask,
|
|
sched_domain_span(sd));
|
|
if (best_cpu < nr_cpu_ids) {
|
|
rcu_read_unlock();
|
|
return best_cpu;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* And finally, if there were no matches within the domains
|
|
* just give the caller *something* to work with from the compatible
|
|
* locations.
|
|
*/
|
|
if (this_cpu != -1)
|
|
return this_cpu;
|
|
|
|
cpu = cpumask_any(lowest_mask);
|
|
if (cpu < nr_cpu_ids)
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
/* Will lock the rq it finds */
|
|
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
{
|
|
struct rq *lowest_rq = NULL;
|
|
int tries;
|
|
int cpu;
|
|
|
|
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
|
|
cpu = find_lowest_rq(task);
|
|
|
|
if ((cpu == -1) || (cpu == rq->cpu))
|
|
break;
|
|
|
|
lowest_rq = cpu_rq(cpu);
|
|
|
|
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
|
|
/*
|
|
* Target rq has tasks of equal or higher priority,
|
|
* retrying does not release any lock and is unlikely
|
|
* to yield a different result.
|
|
*/
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
|
|
/* if the prio of this runqueue changed, try again */
|
|
if (double_lock_balance(rq, lowest_rq)) {
|
|
/*
|
|
* We had to unlock the run queue. In
|
|
* the mean time, task could have
|
|
* migrated already or had its affinity changed.
|
|
* Also make sure that it wasn't scheduled on its rq.
|
|
*/
|
|
if (unlikely(task_rq(task) != rq ||
|
|
!cpumask_test_cpu(lowest_rq->cpu,
|
|
tsk_cpus_allowed(task)) ||
|
|
task_running(rq, task) ||
|
|
!rt_task(task) ||
|
|
!task_on_rq_queued(task))) {
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If this rq is still suitable use it. */
|
|
if (lowest_rq->rt.highest_prio.curr > task->prio)
|
|
break;
|
|
|
|
/* try again */
|
|
double_unlock_balance(rq, lowest_rq);
|
|
lowest_rq = NULL;
|
|
}
|
|
|
|
return lowest_rq;
|
|
}
|
|
|
|
static struct task_struct *pick_next_pushable_task(struct rq *rq)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
if (!has_pushable_tasks(rq))
|
|
return NULL;
|
|
|
|
p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
struct task_struct, pushable_tasks);
|
|
|
|
BUG_ON(rq->cpu != task_cpu(p));
|
|
BUG_ON(task_current(rq, p));
|
|
BUG_ON(p->nr_cpus_allowed <= 1);
|
|
|
|
BUG_ON(!task_on_rq_queued(p));
|
|
BUG_ON(!rt_task(p));
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* If the current CPU has more than one RT task, see if the non
|
|
* running task can migrate over to a CPU that is running a task
|
|
* of lesser priority.
|
|
*/
|
|
static int push_rt_task(struct rq *rq)
|
|
{
|
|
struct task_struct *next_task;
|
|
struct rq *lowest_rq;
|
|
int ret = 0;
|
|
|
|
if (!rq->rt.overloaded)
|
|
return 0;
|
|
|
|
next_task = pick_next_pushable_task(rq);
|
|
if (!next_task)
|
|
return 0;
|
|
|
|
retry:
|
|
if (unlikely(next_task == rq->curr)) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's possible that the next_task slipped in of
|
|
* higher priority than current. If that's the case
|
|
* just reschedule current.
|
|
*/
|
|
if (unlikely(next_task->prio < rq->curr->prio)) {
|
|
resched_curr(rq);
|
|
return 0;
|
|
}
|
|
|
|
/* We might release rq lock */
|
|
get_task_struct(next_task);
|
|
|
|
/* find_lock_lowest_rq locks the rq if found */
|
|
lowest_rq = find_lock_lowest_rq(next_task, rq);
|
|
if (!lowest_rq) {
|
|
struct task_struct *task;
|
|
/*
|
|
* find_lock_lowest_rq releases rq->lock
|
|
* so it is possible that next_task has migrated.
|
|
*
|
|
* We need to make sure that the task is still on the same
|
|
* run-queue and is also still the next task eligible for
|
|
* pushing.
|
|
*/
|
|
task = pick_next_pushable_task(rq);
|
|
if (task_cpu(next_task) == rq->cpu && task == next_task) {
|
|
/*
|
|
* The task hasn't migrated, and is still the next
|
|
* eligible task, but we failed to find a run-queue
|
|
* to push it to. Do not retry in this case, since
|
|
* other cpus will pull from us when ready.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
if (!task)
|
|
/* No more tasks, just exit */
|
|
goto out;
|
|
|
|
/*
|
|
* Something has shifted, try again.
|
|
*/
|
|
put_task_struct(next_task);
|
|
next_task = task;
|
|
goto retry;
|
|
}
|
|
|
|
deactivate_task(rq, next_task, 0);
|
|
set_task_cpu(next_task, lowest_rq->cpu);
|
|
activate_task(lowest_rq, next_task, 0);
|
|
ret = 1;
|
|
|
|
resched_curr(lowest_rq);
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
|
|
out:
|
|
put_task_struct(next_task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void push_rt_tasks(struct rq *rq)
|
|
{
|
|
/* push_rt_task will return true if it moved an RT */
|
|
while (push_rt_task(rq))
|
|
;
|
|
}
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
/*
|
|
* The search for the next cpu always starts at rq->cpu and ends
|
|
* when we reach rq->cpu again. It will never return rq->cpu.
|
|
* This returns the next cpu to check, or nr_cpu_ids if the loop
|
|
* is complete.
|
|
*
|
|
* rq->rt.push_cpu holds the last cpu returned by this function,
|
|
* or if this is the first instance, it must hold rq->cpu.
|
|
*/
|
|
static int rto_next_cpu(struct rq *rq)
|
|
{
|
|
int prev_cpu = rq->rt.push_cpu;
|
|
int cpu;
|
|
|
|
cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
|
|
|
|
/*
|
|
* If the previous cpu is less than the rq's CPU, then it already
|
|
* passed the end of the mask, and has started from the beginning.
|
|
* We end if the next CPU is greater or equal to rq's CPU.
|
|
*/
|
|
if (prev_cpu < rq->cpu) {
|
|
if (cpu >= rq->cpu)
|
|
return nr_cpu_ids;
|
|
|
|
} else if (cpu >= nr_cpu_ids) {
|
|
/*
|
|
* We passed the end of the mask, start at the beginning.
|
|
* If the result is greater or equal to the rq's CPU, then
|
|
* the loop is finished.
|
|
*/
|
|
cpu = cpumask_first(rq->rd->rto_mask);
|
|
if (cpu >= rq->cpu)
|
|
return nr_cpu_ids;
|
|
}
|
|
rq->rt.push_cpu = cpu;
|
|
|
|
/* Return cpu to let the caller know if the loop is finished or not */
|
|
return cpu;
|
|
}
|
|
|
|
static int find_next_push_cpu(struct rq *rq)
|
|
{
|
|
struct rq *next_rq;
|
|
int cpu;
|
|
|
|
while (1) {
|
|
cpu = rto_next_cpu(rq);
|
|
if (cpu >= nr_cpu_ids)
|
|
break;
|
|
next_rq = cpu_rq(cpu);
|
|
|
|
/* Make sure the next rq can push to this rq */
|
|
if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
|
|
break;
|
|
}
|
|
|
|
return cpu;
|
|
}
|
|
|
|
#define RT_PUSH_IPI_EXECUTING 1
|
|
#define RT_PUSH_IPI_RESTART 2
|
|
|
|
static void tell_cpu_to_push(struct rq *rq)
|
|
{
|
|
int cpu;
|
|
|
|
if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
|
|
raw_spin_lock(&rq->rt.push_lock);
|
|
/* Make sure it's still executing */
|
|
if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
|
|
/*
|
|
* Tell the IPI to restart the loop as things have
|
|
* changed since it started.
|
|
*/
|
|
rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
|
|
raw_spin_unlock(&rq->rt.push_lock);
|
|
return;
|
|
}
|
|
raw_spin_unlock(&rq->rt.push_lock);
|
|
}
|
|
|
|
/* When here, there's no IPI going around */
|
|
|
|
rq->rt.push_cpu = rq->cpu;
|
|
cpu = find_next_push_cpu(rq);
|
|
if (cpu >= nr_cpu_ids)
|
|
return;
|
|
|
|
rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
|
|
|
|
irq_work_queue_on(&rq->rt.push_work, cpu);
|
|
}
|
|
|
|
/* Called from hardirq context */
|
|
static void try_to_push_tasks(void *arg)
|
|
{
|
|
struct rt_rq *rt_rq = arg;
|
|
struct rq *rq, *src_rq;
|
|
int this_cpu;
|
|
int cpu;
|
|
|
|
this_cpu = rt_rq->push_cpu;
|
|
|
|
/* Paranoid check */
|
|
BUG_ON(this_cpu != smp_processor_id());
|
|
|
|
rq = cpu_rq(this_cpu);
|
|
src_rq = rq_of_rt_rq(rt_rq);
|
|
|
|
again:
|
|
if (has_pushable_tasks(rq)) {
|
|
raw_spin_lock(&rq->lock);
|
|
push_rt_task(rq);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
/* Pass the IPI to the next rt overloaded queue */
|
|
raw_spin_lock(&rt_rq->push_lock);
|
|
/*
|
|
* If the source queue changed since the IPI went out,
|
|
* we need to restart the search from that CPU again.
|
|
*/
|
|
if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
|
|
rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
|
|
rt_rq->push_cpu = src_rq->cpu;
|
|
}
|
|
|
|
cpu = find_next_push_cpu(src_rq);
|
|
|
|
if (cpu >= nr_cpu_ids)
|
|
rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
|
|
raw_spin_unlock(&rt_rq->push_lock);
|
|
|
|
if (cpu >= nr_cpu_ids)
|
|
return;
|
|
|
|
/*
|
|
* It is possible that a restart caused this CPU to be
|
|
* chosen again. Don't bother with an IPI, just see if we
|
|
* have more to push.
|
|
*/
|
|
if (unlikely(cpu == rq->cpu))
|
|
goto again;
|
|
|
|
/* Try the next RT overloaded CPU */
|
|
irq_work_queue_on(&rt_rq->push_work, cpu);
|
|
}
|
|
|
|
static void push_irq_work_func(struct irq_work *work)
|
|
{
|
|
struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
|
|
|
|
try_to_push_tasks(rt_rq);
|
|
}
|
|
#endif /* HAVE_RT_PUSH_IPI */
|
|
|
|
static void pull_rt_task(struct rq *this_rq)
|
|
{
|
|
int this_cpu = this_rq->cpu, cpu;
|
|
bool resched = false;
|
|
struct task_struct *p;
|
|
struct rq *src_rq;
|
|
|
|
if (likely(!rt_overloaded(this_rq)))
|
|
return;
|
|
|
|
/*
|
|
* Match the barrier from rt_set_overloaded; this guarantees that if we
|
|
* see overloaded we must also see the rto_mask bit.
|
|
*/
|
|
smp_rmb();
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
if (sched_feat(RT_PUSH_IPI)) {
|
|
tell_cpu_to_push(this_rq);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for_each_cpu(cpu, this_rq->rd->rto_mask) {
|
|
if (this_cpu == cpu)
|
|
continue;
|
|
|
|
src_rq = cpu_rq(cpu);
|
|
|
|
/*
|
|
* Don't bother taking the src_rq->lock if the next highest
|
|
* task is known to be lower-priority than our current task.
|
|
* This may look racy, but if this value is about to go
|
|
* logically higher, the src_rq will push this task away.
|
|
* And if its going logically lower, we do not care
|
|
*/
|
|
if (src_rq->rt.highest_prio.next >=
|
|
this_rq->rt.highest_prio.curr)
|
|
continue;
|
|
|
|
/*
|
|
* We can potentially drop this_rq's lock in
|
|
* double_lock_balance, and another CPU could
|
|
* alter this_rq
|
|
*/
|
|
double_lock_balance(this_rq, src_rq);
|
|
|
|
/*
|
|
* We can pull only a task, which is pushable
|
|
* on its rq, and no others.
|
|
*/
|
|
p = pick_highest_pushable_task(src_rq, this_cpu);
|
|
|
|
/*
|
|
* Do we have an RT task that preempts
|
|
* the to-be-scheduled task?
|
|
*/
|
|
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
|
|
WARN_ON(p == src_rq->curr);
|
|
WARN_ON(!task_on_rq_queued(p));
|
|
|
|
/*
|
|
* There's a chance that p is higher in priority
|
|
* than what's currently running on its cpu.
|
|
* This is just that p is wakeing up and hasn't
|
|
* had a chance to schedule. We only pull
|
|
* p if it is lower in priority than the
|
|
* current task on the run queue
|
|
*/
|
|
if (p->prio < src_rq->curr->prio)
|
|
goto skip;
|
|
|
|
resched = true;
|
|
|
|
deactivate_task(src_rq, p, 0);
|
|
set_task_cpu(p, this_cpu);
|
|
activate_task(this_rq, p, 0);
|
|
/*
|
|
* We continue with the search, just in
|
|
* case there's an even higher prio task
|
|
* in another runqueue. (low likelihood
|
|
* but possible)
|
|
*/
|
|
}
|
|
skip:
|
|
double_unlock_balance(this_rq, src_rq);
|
|
}
|
|
|
|
if (resched)
|
|
resched_curr(this_rq);
|
|
}
|
|
|
|
/*
|
|
* If we are not running and we are not going to reschedule soon, we should
|
|
* try to push tasks away now
|
|
*/
|
|
static void task_woken_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (!task_running(rq, p) &&
|
|
!test_tsk_need_resched(rq->curr) &&
|
|
p->nr_cpus_allowed > 1 &&
|
|
(dl_task(rq->curr) || rt_task(rq->curr)) &&
|
|
(rq->curr->nr_cpus_allowed < 2 ||
|
|
rq->curr->prio <= p->prio))
|
|
push_rt_tasks(rq);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_online_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_set_overload(rq);
|
|
|
|
__enable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
}
|
|
|
|
/* Assumes rq->lock is held */
|
|
static void rq_offline_rt(struct rq *rq)
|
|
{
|
|
if (rq->rt.overloaded)
|
|
rt_clear_overload(rq);
|
|
|
|
__disable_runtime(rq);
|
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
|
|
}
|
|
|
|
/*
|
|
* When switch from the rt queue, we bring ourselves to a position
|
|
* that we might want to pull RT tasks from other runqueues.
|
|
*/
|
|
static void switched_from_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
detach_task_rt_rq(p);
|
|
/*
|
|
* If there are other RT tasks then we will reschedule
|
|
* and the scheduling of the other RT tasks will handle
|
|
* the balancing. But if we are the last RT task
|
|
* we may need to handle the pulling of RT tasks
|
|
* now.
|
|
*/
|
|
if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
|
|
return;
|
|
|
|
queue_pull_task(rq);
|
|
}
|
|
|
|
void __init init_sched_rt_class(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
|
|
GFP_KERNEL, cpu_to_node(i));
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
frt_boost_threshold = 0;
|
|
#endif
|
|
sched_switch_to_rt_load_ratio = 0;
|
|
sched_switch_to_fair_load_ratio = 0;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
extern
|
|
void copy_sched_avg(struct sched_avg *from, struct sched_avg *to, unsigned int ratio);
|
|
/*
|
|
* When switching a task to RT, we may overload the runqueue
|
|
* with RT tasks. In this case we try to push them off to
|
|
* other runqueues.
|
|
*/
|
|
static void switched_to_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
copy_sched_avg(&p->se.avg, &p->rt.avg, sched_switch_to_rt_load_ratio);
|
|
/*
|
|
* If we are already running, then there's nothing
|
|
* that needs to be done. But if we are not running
|
|
* we may need to preempt the current running task.
|
|
* If that current running task is also an RT task
|
|
* then see if we can move to another run queue.
|
|
*/
|
|
if (task_on_rq_queued(p) && rq->curr != p) {
|
|
#ifdef CONFIG_SMP
|
|
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
|
|
queue_push_tasks(rq);
|
|
#else
|
|
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
|
|
resched_curr(rq);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Priority of the task has changed. This may cause
|
|
* us to initiate a push or pull.
|
|
*/
|
|
static void
|
|
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
|
|
{
|
|
if (!task_on_rq_queued(p))
|
|
return;
|
|
|
|
if (rq->curr == p) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* If our priority decreases while running, we
|
|
* may need to pull tasks to this runqueue.
|
|
*/
|
|
if (oldprio < p->prio)
|
|
queue_pull_task(rq);
|
|
|
|
/*
|
|
* If there's a higher priority task waiting to run
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio > rq->rt.highest_prio.curr)
|
|
resched_curr(rq);
|
|
#else
|
|
/* For UP simply resched on drop of prio */
|
|
if (oldprio < p->prio)
|
|
resched_curr(rq);
|
|
#endif /* CONFIG_SMP */
|
|
} else {
|
|
/*
|
|
* This task is not running, but if it is
|
|
* greater than the current running task
|
|
* then reschedule.
|
|
*/
|
|
if (p->prio < rq->curr->prio)
|
|
resched_curr(rq);
|
|
}
|
|
}
|
|
|
|
static void watchdog(struct rq *rq, struct task_struct *p)
|
|
{
|
|
unsigned long soft, hard;
|
|
|
|
/* max may change after cur was read, this will be fixed next tick */
|
|
soft = task_rlimit(p, RLIMIT_RTTIME);
|
|
hard = task_rlimit_max(p, RLIMIT_RTTIME);
|
|
|
|
if (soft != RLIM_INFINITY) {
|
|
unsigned long next;
|
|
|
|
if (p->rt.watchdog_stamp != jiffies) {
|
|
p->rt.timeout++;
|
|
p->rt.watchdog_stamp = jiffies;
|
|
}
|
|
|
|
next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
|
|
if (p->rt.timeout > next)
|
|
p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
|
|
}
|
|
}
|
|
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
|
|
{
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
u64 now = rq_clock_task(rq);
|
|
|
|
update_curr_rt(rq);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
|
|
update_rt_load_avg(now, rt_se, rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
|
|
}
|
|
|
|
watchdog(rq, p);
|
|
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if (p->policy != SCHED_RR)
|
|
return;
|
|
|
|
if (--p->rt.time_slice)
|
|
return;
|
|
|
|
p->rt.time_slice = sched_rr_timeslice;
|
|
|
|
/*
|
|
* Requeue to the end of queue if we (and all of our ancestors) are not
|
|
* the only element on the queue
|
|
*/
|
|
for_each_sched_rt_entity(rt_se) {
|
|
if (rt_se->run_list.prev != rt_se->run_list.next) {
|
|
requeue_task_rt(rq, p, 0);
|
|
resched_curr(rq);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_curr_task_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *p = rq->curr;
|
|
struct sched_rt_entity *rt_se = &p->rt;
|
|
|
|
p->se.exec_start = rq_clock_task(rq);
|
|
|
|
for_each_sched_rt_entity(rt_se) {
|
|
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
|
|
|
|
rt_rq->curr = rt_se;
|
|
}
|
|
|
|
/* The running task is never eligible for pushing */
|
|
dequeue_pushable_task(rq, p);
|
|
}
|
|
|
|
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
|
|
{
|
|
/*
|
|
* Time slice is 0 for SCHED_FIFO tasks
|
|
*/
|
|
if (task->policy == SCHED_RR)
|
|
return sched_rr_timeslice;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
const struct sched_class rt_sched_class = {
|
|
.next = &fair_sched_class,
|
|
.enqueue_task = enqueue_task_rt,
|
|
.dequeue_task = dequeue_task_rt,
|
|
.yield_task = yield_task_rt,
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
.put_prev_task = put_prev_task_rt,
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
.select_task_rq = select_task_rq_rt_fluid,
|
|
#else
|
|
.select_task_rq = select_task_rq_rt,
|
|
#endif
|
|
.migrate_task_rq = migrate_task_rq_rt,
|
|
|
|
.set_cpus_allowed = set_cpus_allowed_common,
|
|
.rq_online = rq_online_rt,
|
|
.rq_offline = rq_offline_rt,
|
|
.task_woken = task_woken_rt,
|
|
.switched_from = switched_from_rt,
|
|
.task_dead = task_dead_rt,
|
|
#endif
|
|
|
|
.set_curr_task = set_curr_task_rt,
|
|
.task_tick = task_tick_rt,
|
|
|
|
.get_rr_interval = get_rr_interval_rt,
|
|
|
|
.prio_changed = prio_changed_rt,
|
|
.switched_to = switched_to_rt,
|
|
|
|
.update_curr = update_curr_rt,
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
.task_move_group = task_move_group_rt,
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
|
|
|
|
void print_rt_stats(struct seq_file *m, int cpu)
|
|
{
|
|
rt_rq_iter_t iter;
|
|
struct rt_rq *rt_rq;
|
|
|
|
rcu_read_lock();
|
|
for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
|
|
print_rt_rq(m, cpu, rt_rq);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
/**********************************************************************
|
|
* Sysfs *
|
|
**********************************************************************/
|
|
static struct attribute *ert_attrs[] = {
|
|
#ifdef CONFIG_SCHED_USE_FLUID_RT
|
|
&frt_boost_threshold_attr.attr,
|
|
#endif
|
|
&switch_fair_load_ratio_attr.attr,
|
|
&switch_rt_load_ratio_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group ert_group = {
|
|
.attrs = ert_attrs,
|
|
};
|
|
|
|
static struct kobject *ert_kobj;
|
|
|
|
static int init_sysfs(void)
|
|
{
|
|
int ret;
|
|
|
|
ert_kobj = kobject_create_and_add("ert", kernel_kobj);
|
|
ret = sysfs_create_group(ert_kobj, &ert_group);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(init_sysfs);
|