Commit Graph

15 Commits

Author SHA1 Message Date
Nicolas Boichat
7280a40254 kmemleak: increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE default to 16K
[ Upstream commit b751c52bb587ae66f773b15204ef7a147467f4c7 ]

The current default value (400) is too low on many systems (e.g.  some
ARM64 platform takes up 1000+ entries).

syzbot uses 16000 as default value, and has proved to be enough on beefy
configurations, so let's pick that value.

This consumes more RAM on boot (each entry is 160 bytes, so in total
~2.5MB of RAM), but the memory would later be freed (early_log is
__initdata).

Link: http://lkml.kernel.org/r/20190730154027.101525-1-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-07 07:55:16 +02:00
Jason A. Donenfeld
a760cbc5c1 siphash: implement HalfSipHash1-3 for hash tables
commit 1ae2324f732c9c4e2fa4ebd885fa1001b70d52e1 upstream.

HalfSipHash, or hsiphash, is a shortened version of SipHash, which
generates 32-bit outputs using a weaker 64-bit key. It has *much* lower
security margins, and shouldn't be used for anything too sensitive, but
it could be used as a hashtable key function replacement, if the output
is never exposed, and if the security requirement is not too high.

The goal is to make this something that performance-critical jhash users
would be willing to use.

On 64-bit machines, HalfSipHash1-3 is slower than SipHash1-3, so we alias
SipHash1-3 to HalfSipHash1-3 on those systems.

64-bit x86_64:
[    0.509409] test_siphash:     SipHash2-4 cycles: 4049181
[    0.510650] test_siphash:     SipHash1-3 cycles: 2512884
[    0.512205] test_siphash: HalfSipHash1-3 cycles: 3429920
[    0.512904] test_siphash:    JenkinsHash cycles:  978267
So, we map hsiphash() -> SipHash1-3

32-bit x86:
[    0.509868] test_siphash:     SipHash2-4 cycles: 14812892
[    0.513601] test_siphash:     SipHash1-3 cycles:  9510710
[    0.515263] test_siphash: HalfSipHash1-3 cycles:  3856157
[    0.515952] test_siphash:    JenkinsHash cycles:  1148567
So, we map hsiphash() -> HalfSipHash1-3

hsiphash() is roughly 3 times slower than jhash(), but comes with a
considerable security improvement.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[bwh: Backported to 4.4 to avoid regression for WireGuard with only half
 the siphash API present]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 21:32:43 +02:00
Jason A. Donenfeld
36e7f4a4d2 siphash: add cryptographically secure PRF
commit 2c956a60778cbb6a27e0c7a8a52a91378c90e1d1 upstream.

SipHash is a 64-bit keyed hash function that is actually a
cryptographically secure PRF, like HMAC. Except SipHash is super fast,
and is meant to be used as a hashtable keyed lookup function, or as a
general PRF for short input use cases, such as sequence numbers or RNG
chaining.

For the first usage:

There are a variety of attacks known as "hashtable poisoning" in which an
attacker forms some data such that the hash of that data will be the
same, and then preceeds to fill up all entries of a hashbucket. This is
a realistic and well-known denial-of-service vector. Currently
hashtables use jhash, which is fast but not secure, and some kind of
rotating key scheme (or none at all, which isn't good). SipHash is meant
as a replacement for jhash in these cases.

There are a modicum of places in the kernel that are vulnerable to
hashtable poisoning attacks, either via userspace vectors or network
vectors, and there's not a reliable mechanism inside the kernel at the
moment to fix it. The first step toward fixing these issues is actually
getting a secure primitive into the kernel for developers to use. Then
we can, bit by bit, port things over to it as deemed appropriate.

While SipHash is extremely fast for a cryptographically secure function,
it is likely a bit slower than the insecure jhash, and so replacements
will be evaluated on a case-by-case basis based on whether or not the
difference in speed is negligible and whether or not the current jhash usage
poses a real security risk.

For the second usage:

A few places in the kernel are using MD5 or SHA1 for creating secure
sequence numbers, syn cookies, port numbers, or fast random numbers.
SipHash is a faster and more fitting, and more secure replacement for MD5
in those situations. Replacing MD5 and SHA1 with SipHash for these uses is
obvious and straight-forward, and so is submitted along with this patch
series. There shouldn't be much of a debate over its efficacy.

Dozens of languages are already using this internally for their hash
tables and PRFs. Some of the BSDs already use this in their kernels.
SipHash is a widely known high-speed solution to a widely known set of
problems, and it's time we catch-up.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[bwh: Backported to 4.4 as dependency of commits df453700e8d8 "inet: switch
 IP ID generator to siphash" and 3c79107631db "netfilter: ctnetlink: don't
 use conntrack/expect object addresses as id":
 - Adjust context]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 21:32:41 +02:00
Christophe Leroy
02cb2a813a lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE
commit aeb87246537a83c2aff482f3f34a2e0991e02cbc upstream.

All mapping iterator logic is based on the assumption that sg->offset
is always lower than PAGE_SIZE.

But there are situations where sg->offset is such that the SG item
is on the second page. In that case sg_copy_to_buffer() fails
properly copying the data into the buffer. One of the reason is
that the data will be outside the kmapped area used to access that
data.

This patch fixes the issue by adjusting the mapping iterator
offset and pgoffset fields such that offset is always lower than
PAGE_SIZE.

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Fixes: 4225fc8555a9 ("lib/scatterlist: use page iterator in the mapping iterator")
Cc: stable@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-06 20:04:15 +02:00
Ferdinand Blomqvist
dcd776d392 rslib: Fix handling of of caller provided syndrome
[ Upstream commit ef4d6a8556b637ad27c8c2a2cff1dda3da38e9a9 ]

Check if the syndrome provided by the caller is zero, and act
accordingly.

Signed-off-by: Ferdinand Blomqvist <ferdinand.blomqvist@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190620141039.9874-6-ferdinand.blomqvist@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 19:55:29 +02:00
Ferdinand Blomqvist
3410199faa rslib: Fix decoding of shortened codes
[ Upstream commit 2034a42d1747fc1e1eeef2c6f1789c4d0762cb9c ]

The decoding of shortenend codes is broken. It only works as expected if
there are no erasures.

When decoding with erasures, Lambda (the error and erasure locator
polynomial) is initialized from the given erasure positions. The pad
parameter is not accounted for by the initialisation code, and hence
Lambda is initialized from incorrect erasure positions.

The fix is to adjust the erasure positions by the supplied pad.

Signed-off-by: Ferdinand Blomqvist <ferdinand.blomqvist@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190620141039.9874-3-ferdinand.blomqvist@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 19:55:27 +02:00
Herbert Xu
ad8067fab5 lib/mpi: Fix karactx leak in mpi_powm
commit c8ea9fce2baf7b643384f36f29e4194fa40d33a6 upstream.

Sometimes mpi_powm will leak karactx because a memory allocation
failure causes a bail-out that skips the freeing of karactx.  This
patch moves the freeing of karactx to the end of the function like
everything else so that it can't be skipped.

Reported-by: syzbot+f7baccc38dcc1e094e77@syzkaller.appspotmail.com
Fixes: cdec9cb5167a ("crypto: GnuPG based MPI lib - source files...")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-06 19:21:06 +02:00
Peter Zijlstra
2088d27a3f mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
[ Upstream commit 29da93fea3ea39ab9b12270cc6be1b70ef201c9e ]

Randy reported objtool triggered on his (GCC-7.4) build:

  lib/strncpy_from_user.o: warning: objtool: strncpy_from_user()+0x315: call to __ubsan_handle_add_overflow() with UACCESS enabled
  lib/strnlen_user.o: warning: objtool: strnlen_user()+0x337: call to __ubsan_handle_sub_overflow() with UACCESS enabled

This is due to UBSAN generating signed-overflow-UB warnings where it
should not. Prior to GCC-8 UBSAN ignored -fwrapv (which the kernel
uses through -fno-strict-overflow).

Make the functions use 'unsigned long' throughout.

Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20190424072208.754094071@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 18:18:29 +02:00
Stanislaw Gruszka
afefeea43d lib/div64.c: off by one in shift
[ Upstream commit cdc94a37493135e355dfc0b0e086d84e3eadb50d ]

fls counts bits starting from 1 to 32 (returns 0 for zero argument).  If
we add 1 we shift right one bit more and loose precision from divisor,
what cause function incorect results with some numbers.

Corrected code was tested in user-space, see bugzilla:
   https://bugzilla.kernel.org/show_bug.cgi?id=202391

Link: http://lkml.kernel.org/r/1548686944-11891-1-git-send-email-sgruszka@redhat.com
Fixes: 658716d19f8f ("div64_u64(): improve precision on 32bit platforms")
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Reported-by: Siarhei Volkau <lis8215@gmail.com>
Tested-by: Siarhei Volkau <lis8215@gmail.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 15:20:42 +02:00
Nick Desaulniers
d8299652d3 lib/string.c: implement a basic bcmp
[ Upstream commit 5f074f3e192f10c9fade898b9b3b8812e3d83342 ]

A recent optimization in Clang (r355672) lowers comparisons of the
return value of memcmp against zero to comparisons of the return value
of bcmp against zero.  This helps some platforms that implement bcmp
more efficiently than memcmp.  glibc simply aliases bcmp to memcmp, but
an optimized implementation is in the works.

This results in linkage failures for all targets with Clang due to the
undefined symbol.  For now, just implement bcmp as a tailcail to memcmp
to unbreak the build.  This routine can be further optimized in the
future.

Other ideas discussed:

 * A weak alias was discussed, but breaks for architectures that define
   their own implementations of memcmp since aliases to declarations are
   not permitted (only definitions). Arch-specific memcmp
   implementations typically declare memcmp in C headers, but implement
   them in assembly.

 * -ffreestanding also is used sporadically throughout the kernel.

 * -fno-builtin-bcmp doesn't work when doing LTO.

Link: https://bugs.llvm.org/show_bug.cgi?id=41035
Link: https://code.woboq.org/userspace/glibc/string/memcmp.c.html#bcmp
Link: 8e16d73346
Link: https://github.com/ClangBuiltLinux/linux/issues/416
Link: http://lkml.kernel.org/r/20190313211335.165605-1-ndesaulniers@google.com
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reported-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: James Y Knight <jyknight@google.com>
Suggested-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Nathan Chancellor <natechancellor@gmail.com>
Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 15:07:18 +02:00
Nathan Chancellor
a60b0f637f ARM: 8833/1: Ensure that NEON code always compiles with Clang
[ Upstream commit de9c0d49d85dc563549972edc5589d195cd5e859 ]

While building arm32 allyesconfig, I ran into the following errors:

  arch/arm/lib/xor-neon.c:17:2: error: You should compile this file with
  '-mfloat-abi=softfp -mfpu=neon'

  In file included from lib/raid6/neon1.c:27:
  /home/nathan/cbl/prebuilt/lib/clang/8.0.0/include/arm_neon.h:28:2:
  error: "NEON support not enabled"

Building V=1 showed NEON_FLAGS getting passed along to Clang but
__ARM_NEON__ was not getting defined. Ultimately, it boils down to Clang
only defining __ARM_NEON__ when targeting armv7, rather than armv6k,
which is the '-march' value for allyesconfig.

>From lib/Basic/Targets/ARM.cpp in the Clang source:

  // This only gets set when Neon instructions are actually available, unlike
  // the VFP define, hence the soft float and arch check. This is subtly
  // different from gcc, we follow the intent which was that it should be set
  // when Neon instructions are actually available.
  if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
    Builder.defineMacro("__ARM_NEON", "1");
    Builder.defineMacro("__ARM_NEON__");
    // current AArch32 NEON implementations do not support double-precision
    // floating-point even when it is present in VFP.
    Builder.defineMacro("__ARM_NEON_FP",
                        "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
  }

Ard Biesheuvel recommended explicitly adding '-march=armv7-a' at the
beginning of the NEON_FLAGS definitions so that __ARM_NEON__ always gets
definined by Clang. This doesn't functionally change anything because
that code will only run where NEON is supported, which is implicitly
armv7.

Link: https://github.com/ClangBuiltLinux/linux/issues/287

Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 14:51:24 +02:00
Andrea Righi
4a905017e0 kprobes: Prohibit probing on bsearch()
[ Upstream commit 02106f883cd745523f7766d90a739f983f19e650 ]

Since kprobe breakpoing handler is using bsearch(), probing on this
routine can cause recursive breakpoint problem.

int3
 ->do_int3()
   ->ftrace_int3_handler()
     ->ftrace_location()
       ->ftrace_location_range()
         ->bsearch() -> int3

Prohibit probing on bsearch().

Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/154998813406.31052.8791425358974650922.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-06 14:51:19 +02:00
Peter Zijlstra
14ea908994 lib/int_sqrt: optimize initial value compute
commit f8ae107eef209bff29a5816bc1aad40d5cd69a80 upstream.

The initial value (@m) compute is:

	m = 1UL << (BITS_PER_LONG - 2);
	while (m > x)
		m >>= 2;

Which is a linear search for the highest even bit smaller or equal to @x
We can implement this using a binary search using __fls() (or better when
its hardware implemented).

	m = 1UL << (__fls(x) & ~1UL);

Especially for small values of @x; which are the more common arguments
when doing a CDF on idle times; the linear search is near to worst case,
while the binary search of __fls() is a constant 6 (or 5 on 32bit)
branches.

      cycles:                 branches:              branch-misses:

PRE:

hot:   43.633557 +- 0.034373  45.333132 +- 0.002277  0.023529 +- 0.000681
cold: 207.438411 +- 0.125840  45.333132 +- 0.002277  6.976486 +- 0.004219

SOFTWARE FLS:

hot:   29.576176 +- 0.028850  26.666730 +- 0.004511  0.019463 +- 0.000663
cold: 165.947136 +- 0.188406  26.666746 +- 0.004511  6.133897 +- 0.004386

HARDWARE FLS:

hot:   24.720922 +- 0.025161  20.666784 +- 0.004509  0.020836 +- 0.000677
cold: 132.777197 +- 0.127471  20.666776 +- 0.004509  5.080285 +- 0.003874

Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.

Link: http://lkml.kernel.org/r/20171020164644.936577234@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Joe Perches <joe@perches.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Anshul Garg <aksgarg1989@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Michael Davidson <md@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-06 13:43:46 +02:00
Peter Zijlstra
1ae2ac7bff lib/int_sqrt: optimize small argument
commit 3f3295709edea6268ff1609855f498035286af73 upstream.

The current int_sqrt() computation is sub-optimal for the case of small
@x.  Which is the interesting case when we're going to do cumulative
distribution functions on idle times, which we assume to be a random
variable, where the target residency of the deepest idle state gives an
upper bound on the variable (5e6ns on recent Intel chips).

In the case of small @x, the compute loop:

	while (m != 0) {
		b = y + m;
		y >>= 1;

		if (x >= b) {
			x -= b;
			y += m;
		}
		m >>= 2;
	}

can be reduced to:

	while (m > x)
		m >>= 2;

Because y==0, b==m and until x>=m y will remain 0.

And while this is computationally equivalent, it runs much faster
because there's less code, in particular less branches.

      cycles:                 branches:              branch-misses:

OLD:

hot:   45.109444 +- 0.044117  44.333392 +- 0.002254  0.018723 +- 0.000593
cold: 187.737379 +- 0.156678  44.333407 +- 0.002254  6.272844 +- 0.004305

PRE:

hot:   67.937492 +- 0.064124  66.999535 +- 0.000488  0.066720 +- 0.001113
cold: 232.004379 +- 0.332811  66.999527 +- 0.000488  6.914634 +- 0.006568

POST:

hot:   43.633557 +- 0.034373  45.333132 +- 0.002277  0.023529 +- 0.000681
cold: 207.438411 +- 0.125840  45.333132 +- 0.002277  6.976486 +- 0.004219

Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.

Link: http://lkml.kernel.org/r/20171020164644.876503355@infradead.org
Fixes: 30493cc9dddb ("lib/int_sqrt.c: optimize square root algorithm")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Anshul Garg <aksgarg1989@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Miller <davem@davemloft.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michael Davidson <md@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-06 11:37:25 +02:00
prashantpaddune
3bca37f224 A750FXXU4CTBC 2020-03-27 21:51:54 +05:30