/* * s2mu107_fuelgauge.c - S2MU107 Fuel Gauge Driver * * Copyright (C) 2019 Samsung Electronics, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #define DEBUG 1 #define SINGLE_BYTE 1 #define TABLE_SIZE 22 #include "include/fuelgauge/s2mu107_fuelgauge.h" #include static enum power_supply_property s2mu107_fuelgauge_props[] = { }; static void s2mu107_init_regs(struct s2mu107_fuelgauge_data *fuelgauge); static void s2mu107_init_temp_compen(struct s2mu107_fuelgauge_data *fuelgauge); static void s2mu107_init_batcap_learn(struct s2mu107_fuelgauge_data *fuelgauge); #if defined(CONFIG_CHARGER_S2MU107_DIRECT) static void s2mu107_set_tperiod(struct s2mu107_fuelgauge_data *fuelgauge, bool is_dc_charging); static void s2mu107_init_for_direct_charge(struct s2mu107_fuelgauge_data *fuelgauge); #endif #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) static void s2mu107_set_trim_10mohm(struct s2mu107_fuelgauge_data *fuelgauge); #endif static int s2mu107_get_vbat(struct s2mu107_fuelgauge_data *fuelgauge); static int s2mu107_get_ocv(struct s2mu107_fuelgauge_data *fuelgauge); static int s2mu107_get_current(struct s2mu107_fuelgauge_data *fuelgauge); static int s2mu107_get_avgcurrent(struct s2mu107_fuelgauge_data *fuelgauge); static int s2mu107_get_avgvbat(struct s2mu107_fuelgauge_data *fuelgauge); static int s2mu107_read_reg_byte(struct i2c_client *client, int reg, void *data) { int ret = 0; int cnt = 0; ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) { while (ret < 0 && cnt < 5) { ret = i2c_smbus_read_byte_data(client, reg); cnt++; dev_err(&client->dev, "%s: I2C read Incorrect! reg:0x%x, data:0x%x, cnt:%d\n", __func__, reg, *(u8 *)data, cnt); } if (cnt == 5) dev_err(&client->dev, "%s: I2C read Failed reg:0x%x, data:0x%x\n", __func__, reg, *(u8 *)data); } *(u8 *)data = (u8)ret; return ret; } /* I2C write enable for bulk write */ static int s2mu107_write_enable(struct i2c_client *client) { u8 data = 0; int ret = 0; int i; ret = s2mu107_read_reg_byte(client, 0x03, &data); data = data | IF_EN_MASK; ret = i2c_smbus_write_byte_data(client, 0x03, data); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, 0x03, data); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } return ret; } /* I2C write disable for bulk write */ static int s2mu107_write_disable(struct i2c_client *client) { u8 data = 0; int ret = 0; int i; ret = s2mu107_read_reg_byte(client, 0x03, &data); data = data & ~IF_EN_MASK; ret = i2c_smbus_write_byte_data(client, 0x03, data); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, 0x03, data); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } return ret; } static int s2mu107_write_and_verify_reg_byte(struct i2c_client *client, int reg, u8 data) { int ret, i = 0; int i2c_corrupted_cnt = 0; u8 temp = 0; ret = s2mu107_write_enable(client); ret = i2c_smbus_write_byte_data(client, reg, data); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, data); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } /* TODO: Update non-writable registers */ if ((reg == 0xee) || (reg == 0xef) || (reg == 0xf2) || (reg == 0xf3) || (reg == 0x0C) || (reg == 0x1e) || (reg == 0x1f) || (reg == 0x27) || (reg == 0x8E) || (reg == 0x90)) { ret = s2mu107_write_disable(client); return ret; } s2mu107_read_reg_byte(client, reg, &temp); while ((temp != data) && (i2c_corrupted_cnt < 5)) { dev_err(&client->dev, "%s: I2C write Incorrect! REG: 0x%x Expected: 0x%x Real-Value: 0x%x\n", __func__, reg, data, temp); ret = i2c_smbus_write_byte_data(client, reg, data); s2mu107_read_reg_byte(client, reg, &temp); i2c_corrupted_cnt++; } if (i2c_corrupted_cnt == 5) dev_err(&client->dev, "%s: I2C write failed REG: 0x%x Expected: 0x%x\n", __func__, reg, data); ret = s2mu107_write_disable(client); return ret; } /* I2C Write & Verify for bulk write */ static int s2mu107_write_and_verify_reg_byte_no_en(struct i2c_client *client, int reg, u8 data) { int ret, i = 0; int i2c_corrupted_cnt = 0; u8 temp = 0; ret = i2c_smbus_write_byte_data(client, reg, data); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, data); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } /* TODO: Update non-writable registers */ if ((reg == 0xee) || (reg == 0xef) || (reg == 0xf2) || (reg == 0xf3) || (reg == 0x0C) || (reg == 0x1e) || (reg == 0x1f) || (reg == 0x27)) { return ret; } s2mu107_read_reg_byte(client, reg, &temp); while ((temp != data) && (i2c_corrupted_cnt < 5)) { dev_err(&client->dev, "%s: I2C write Incorrect! REG: 0x%x Expected: 0x%x Real-Value: 0x%x\n", __func__, reg, data, temp); ret = i2c_smbus_write_byte_data(client, reg, data); s2mu107_read_reg_byte(client, reg, &temp); i2c_corrupted_cnt++; } if (i2c_corrupted_cnt == 5) dev_err(&client->dev, "%s: I2C write failed REG: 0x%x Expected: 0x%x\n", __func__, reg, data); return ret; } static int s2mu107_update_reg_byte(struct i2c_client *client, int reg, u8 val, u8 mask) { int ret; u8 old_val = 0, new_val = 0; ret = s2mu107_read_reg_byte(client, reg, &old_val); if (ret >= 0) { new_val = (val & mask) | (old_val & (~mask)); ret = s2mu107_write_and_verify_reg_byte(client, reg, new_val); } return ret; } static int s2mu107_update_reg_byte_no_en(struct i2c_client *client, int reg, u8 val, u8 mask) { int ret; u8 old_val = 0, new_val = 0; ret = s2mu107_read_reg_byte(client, reg, &old_val); if (ret >= 0) { new_val = (val & mask) | (old_val & (~mask)); ret = s2mu107_write_and_verify_reg_byte_no_en(client, reg, new_val); } return ret; } #if 0 static int s2mu107_write_reg(struct i2c_client *client, int reg, u8 *buf) { #if SINGLE_BYTE int ret = 0; s2mu107_write_enable(client); s2mu107_write_and_verify_reg_byte_no_en(client, reg, buf[0]); s2mu107_write_and_verify_reg_byte_no_en(client, reg+1, buf[1]); s2mu107_write_disable(client); #else int ret, i = 0; ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } #endif return ret; } #endif static int s2mu107_read_reg(struct i2c_client *client, int reg, u8 *buf) { #if SINGLE_BYTE int ret = 0; u8 data1 = 0, data2 = 0; s2mu107_read_reg_byte(client, reg, &data1); s2mu107_read_reg_byte(client, reg+1, &data2); buf[0] = data1; buf[1] = data2; #else int ret = 0, i = 0; ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf); if (ret < 0) { for (i = 0; i < 3; i++) { ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf); if (ret >= 0) break; } if (i >= 3) dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret); } #endif return ret; } static void s2mu107_fg_test_read(struct i2c_client *client) { static int reg_list[] = { 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x14, 0x1A, 0x1B, 0x1E, 0x1F, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x40, 0x41, 0x43, 0x44, 0x45, 0x46, 0x48, 0x4A, 0x4B, 0x50, 0x51, 0x52, 0x53, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x67, 0x6B, 0x6D, 0x70, 0x71, 0x72, 0x73, 0x7A, 0x7B, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8E, 0x8F, 0x90, 0x91 }; u8 data = 0; char str[1016] = {0,}; int i = 0, reg_list_size = 0; reg_list_size = ARRAY_SIZE(reg_list); for (i = 0; i < reg_list_size; i++) { s2mu107_read_reg_byte(client, reg_list[i], &data); sprintf(str+strlen(str), "0x%02x:0x%02x, ", reg_list[i], data); } /* print buffer */ pr_info("%s: %s\n", __func__, str); } static int check_current_level(struct s2mu107_fuelgauge_data *fuelgauge) { int ret_val = 500; int temp = 0; if (fuelgauge->cable_type == SEC_BATTERY_CABLE_USB) { return ret_val; } /* topoff current * 1.6 except USB */ temp = fuelgauge->topoff_current * 16; ret_val = temp / 10; return ret_val; } static void s2mu107_restart_gauging(struct s2mu107_fuelgauge_data *fuelgauge) { /* TODO: Update reset sequence */ pr_info("%s: Re-calculate SOC and voltage\n", __func__); mutex_lock(&fuelgauge->fg_lock); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START, 0x0F); msleep(300); mutex_unlock(&fuelgauge->fg_lock); } /* Need to lock/unlock start&end of reset */ static void s2mu107_reset_fg(struct s2mu107_fuelgauge_data *fuelgauge) { int i; /* Enable I2C write for battery parameter write */ s2mu107_write_enable(fuelgauge->i2c); #if defined(CONFIG_BATTERY_AGE_FORECAST) s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV + 1, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV_NEW_IN, (fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0] | 0x01)); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV_NEW_IN + 1, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP + 1, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP + 1, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x13, fuelgauge->age_data_info[fuelgauge->fg_age_step].volt_mode_tunning); #else s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV, fuelgauge->info.batcap[0]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV + 1, fuelgauge->info.batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV_NEW_IN, (fuelgauge->info.batcap[0] | 0x01)); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV_NEW_IN + 1, fuelgauge->info.batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP, fuelgauge->info.batcap[0]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RDESIGN_CAP + 1, fuelgauge->info.batcap[1]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP, fuelgauge->info.batcap[2]); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RBATCAP + 1, fuelgauge->info.batcap[3]); #endif /* After battery capacity update, set BATCAP_OCV_EN(0x0C[6]=1) */ s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x0C, 0x40, 0x40); #if defined(CONFIG_BATTERY_AGE_FORECAST) for(i = 0x92; i <= 0xe9; i++) { s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table3[i - 0x92]); } for(i = 0xea; i <= 0xff; i++) { s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->age_data_info[fuelgauge->fg_age_step].battery_table4[i - 0xea]); } #else for (i = 0x92; i <= 0xe9; i++) s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]); for (i = 0xea; i <= 0xff; i++) s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]); #endif #if defined(CONFIG_BATTERY_AGE_FORECAST) s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x44, fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[0]); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x45, fuelgauge->age_data_info[fuelgauge->fg_age_step].accum[1], 0x0F); #else s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x44, fuelgauge->info.accum[0]); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x45, fuelgauge->info.accum[1], 0x0F); #endif s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x14, 0x67); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x4B, 0x00, 0x70); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x4A, 0x10); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x40, 0x08); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x41, 0x04); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x5C, 0x1A); /* Dumpdone. Re-calculate SOC */ s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START, 0x0F); msleep(300); /* If it was voltage mode, recover it */ if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) { s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x4A, 0xFF); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x4B, 0x70, 0x70); } s2mu107_write_disable(fuelgauge->i2c); pr_info("%s: Reset FG completed\n", __func__); } static int s2mu107_fix_rawsoc_reset_fg(struct s2mu107_fuelgauge_data *fuelgauge) { int ret = 0, ui_soc = 0, f_soc = 0; u8 data; struct power_supply *psy; union power_supply_propval value; psy = power_supply_get_by_name("battery"); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); dev_info(&fuelgauge->i2c->dev, "%s: UI SOC = %d\n", __func__, value.intval); ui_soc = value.intval; f_soc = (ui_soc << 8) / 100; if (f_soc > 0xFF) f_soc = 0xFF; f_soc |= 0x1; data = (u8)f_soc; /* Set rawsoc fix & enable */ s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x29, data); /* Parameter write */ s2mu107_reset_fg(fuelgauge); /* Disable rawsoc fix */ s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x29, 0x00); dev_info(&fuelgauge->i2c->dev, "%s: Finish\n", __func__); return ret; } /* Set model data version for next boot up initializing fuelgauge */ static void s2mu107_fg_reset_capacity_by_jig_connection(struct s2mu107_fuelgauge_data *fuelgauge) { /* TODO : model data version check */ u8 data = 0; s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_FG_ID, &data); data &= 0xF0; data |= 0x0F; //set model data version 0xF for next boot up initializing fuelgague s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_FG_ID, data); } static int s2mu107_set_temperature(struct s2mu107_fuelgauge_data *fuelgauge, int temperature) { /* TODO: Add temperature setting code */ return temperature; } static int s2mu107_get_temperature(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int temperature = 0; mutex_lock(&fuelgauge->fg_lock); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGTEMP); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); /* data[] store 2's compliment format number */ if (compliment & (0x1 << 15)) { /* Negative */ temperature = -1 * ((~compliment & 0xFFFF) + 1); } else { temperature = compliment & 0x7FFF; } temperature = ((temperature * 100) >> 8)/10; pr_info("%s: temperature (%d)\n", __func__, temperature); return temperature; err: mutex_unlock(&fuelgauge->fg_lock); return -ERANGE; } static int s2mu107_fg_check_surge(struct s2mu107_fuelgauge_data *fuelgauge) { u8 por_state = 0; u8 reg_1E = 0; u8 reg_OTP_52 = 0, reg_OTP_53 = 0; #if defined(CONFIG_CHARGER_S2MU107) bool charging_enabled = false; struct power_supply *psy; union power_supply_propval value; int ret; #endif s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START, ®_1E); s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, &por_state); s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, ®_OTP_52); s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, ®_OTP_53); dev_err(&fuelgauge->i2c->dev, "%s: OTP 52(%02x) 53(%02x), current 52(%02x) 53(%02x), " "0x1F(%02x), 0x1E(%02x)\n", __func__, fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53, reg_OTP_52, reg_OTP_53, por_state, reg_1E); #if defined(CONFIG_BATTERY_AGE_FORECAST) if((((por_state != 0x00) || (reg_1E != 0x03)) && (fuelgauge->age_reset_status == 0)) || #else if(((por_state != 0x00) || (reg_1E != 0x03)) || #endif (fuelgauge->probe_done == true && (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53))) { #if defined(CONFIG_CHARGER_S2MU107) /* check charging enable */ psy = power_supply_get_by_name(fuelgauge->pdata->charger_name); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); charging_enabled = value.intval; value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF; psy = power_supply_get_by_name(fuelgauge->pdata->charger_name); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); #endif mutex_lock(&fuelgauge->fg_lock); if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) { s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x40); usleep_range(10000, 11000); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x01); msleep(50); s2mu107_write_disable(fuelgauge->i2c); s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, ®_OTP_53); s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, ®_OTP_52); dev_err(&fuelgauge->i2c->dev, "1st reset after %s: OTP 52(%02x) 53(%02x) " "current 52(%02x) 53(%02x)\n", __func__, fuelgauge->reg_OTP_52, fuelgauge->reg_OTP_53, reg_OTP_52, reg_OTP_53); if (fuelgauge->reg_OTP_52 != reg_OTP_52 || fuelgauge->reg_OTP_53 != reg_OTP_53) { s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x40); usleep_range(10000, 11000); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x01); msleep(50); s2mu107_write_disable(fuelgauge->i2c); dev_err(&fuelgauge->i2c->dev, "%s : 2nd reset\n", __func__); } } dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__); /* If UI SOC is 0%, do not use raw SOC fix reset */ if(fuelgauge->ui_soc == 0) s2mu107_reset_fg(fuelgauge); else s2mu107_fix_rawsoc_reset_fg(fuelgauge); por_state = 0x00; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, por_state); /* Need to do initial setting again, after IC reset */ s2mu107_init_regs(fuelgauge); #if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN) s2mu107_init_temp_compen(fuelgauge); #endif s2mu107_init_batcap_learn(fuelgauge); #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) s2mu107_set_trim_10mohm(fuelgauge); #endif #if defined(CONFIG_CHARGER_S2MU107_DIRECT) s2mu107_init_for_direct_charge(fuelgauge); #endif mutex_unlock(&fuelgauge->fg_lock); #if defined(CONFIG_CHARGER_S2MU107) /* Recover charger status after f.g reset */ if (charging_enabled) { value.intval = SEC_BAT_CHG_MODE_CHARGING; psy = power_supply_get_by_name(fuelgauge->pdata->charger_name); if (!psy) return -EINVAL; ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); } #endif } return 0; } static void s2mu107_fg_update_mode(struct s2mu107_fuelgauge_data *fuelgauge) { int float_voltage = 0; #if defined(CONFIG_CHARGER_S2MU107) struct power_supply *psy; union power_supply_propval value; int ret; #endif u8 reg_0x67; #if defined(CONFIG_CHARGER_S2MU107) psy = power_supply_get_by_name(fuelgauge->pdata->charger_name); if (!psy) float_voltage = 4350; else { ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_VOLTAGE_MAX, &value); if (ret < 0) { pr_err("%s: Fail to execute property\n", __func__); float_voltage = 4350; } else float_voltage = value.intval; } #else float_voltage = 4350; #endif float_voltage = (float_voltage * 996) / 1000; mutex_lock(&fuelgauge->fg_lock); if ((fuelgauge->is_charging == true) && ((fuelgauge->ui_soc >= 98) || ((fuelgauge->avg_vbat > float_voltage) && (fuelgauge->avg_curr < check_current_level(fuelgauge))))) { if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */ fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0xFF); s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x70, 0x70); dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__); } } else if (fuelgauge->avg_curr < -50 || fuelgauge->avg_curr >= check_current_level(fuelgauge)) { if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) { fuelgauge->mode = CURRENT_MODE; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10); s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x00, 0x70); dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__); } } s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, ®_0x67); if ((fuelgauge->avg_vbat > 3400) && (fuelgauge->is_charging == true) && (fuelgauge->soc_m < 400) && ((reg_0x67 & 0x02) == 0x02)) { s2mu107_update_reg_byte(fuelgauge->i2c, 0x67, 0x00, 0x02); pr_info("%s: 0x67[1] = 0", __func__); } else if ((fuelgauge->soc_m > 450) && ((reg_0x67 & 0x02) == 0x00)) { s2mu107_update_reg_byte(fuelgauge->i2c, 0x67, 0x02, 0x02); pr_info("%s: 0x67[1] = 1", __func__); } mutex_unlock(&fuelgauge->fg_lock); } static void s2mu107_fg_low_vbat_WA(struct s2mu107_fuelgauge_data *fuelgauge) { /* Low voltage W/A, make 0% */ if (fuelgauge->temperature > fuelgauge->low_temp_limit) { if ((fuelgauge->avg_vbat < fuelgauge->low_vbat_threshold) && (fuelgauge->avg_curr < -50) && (fuelgauge->soc_m > 300)) { dev_info(&fuelgauge->i2c->dev, "%s: Low voltage WA.\n", __func__); mutex_lock(&fuelgauge->fg_lock); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x29, 0x07); /* Dumpdone. Re-calculate SOC */ s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START, 0x0F); msleep(300); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x29, 0x00, 0x01); s2mu107_write_disable(fuelgauge->i2c); mutex_unlock(&fuelgauge->fg_lock); } } else { if ((fuelgauge->avg_vbat < fuelgauge->low_vbat_threshold_lowtemp) && (fuelgauge->avg_curr < -50) && (fuelgauge->info.soc > 100)) { dev_info(&fuelgauge->i2c->dev, "%s: Low voltage WA. Make UI SOC 0\n", __func__); /* Make report SOC 0% */ fuelgauge->info.soc = 0; } } } static int s2mu107_get_raw_soc(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2], check_data[2]; u16 compliment; int rsoc = 0; int i; mutex_lock(&fuelgauge->fg_lock); for (i = 0; i < 50; i++) { if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC, data) < 0) goto err; if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC, check_data) < 0) goto err; if ((data[0] == check_data[0]) && (data[1] == check_data[1])) { dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]); break; } } mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); if (compliment & (0x1 << 15)) { /* Negative */ rsoc = ((~compliment) & 0xFFFF) + 1; rsoc = (rsoc * (-10000)) / (0x1 << 14); } else { rsoc = compliment & 0x7FFF; rsoc = ((rsoc * 10000) / (0x1 << 14)); } return rsoc; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_get_compen_soc(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2], check_data[2], temp = 0; u16 compliment; int soc_r = 0; int i, ui_soc = 0; int update_soc; mutex_lock(&fuelgauge->fg_lock); if (fuelgauge->init_start) { s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data); if (data[1] == 0) { ui_soc = (data[1] << 8) | (data[0]); if ((fuelgauge->temperature < fuelgauge->low_temp_limit) || ui_soc == 100) { pr_info("%s: temperature is low or UI soc 100! use saved UI SOC(%d)" " for mapping, data[1] = 0x%02x, data[0] = 0x%02x\n", __func__, ui_soc, data[1], data[0]); fuelgauge->ui_soc = ui_soc; fuelgauge->capacity_old = ui_soc; if (fuelgauge->temperature < fuelgauge->low_temp_limit) fuelgauge->initial_update_of_soc = false; s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp); temp = temp | TEMP_COMPEN_INC_OK_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp); if (ui_soc == 100) update_soc = 0xFFFF; else update_soc = (ui_soc * (0x1 << 16)) / 100; /* WRITE_EN */ data[0] = (update_soc & 0x00FF) | 0x0001; data[1] = (update_soc & 0xFF00) >> 8; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_I2C + 1, data[1]); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_I2C, data[0]); msleep(300); s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp); temp = temp & ~TEMP_COMPEN_INC_OK_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp); s2mu107_fg_test_read(fuelgauge->i2c); } } } for (i = 0; i < 50; i++) { if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R, data) < 0) goto err; if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R, check_data) < 0) goto err; if ((data[0] == check_data[0]) && (data[1] == check_data[1])) { dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]); break; } } mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); if (compliment & (0x1 << 15)) { /* Negative */ soc_r = ((~compliment) & 0xFFFF) + 1; soc_r = (soc_r * (-10000)) / (0x1 << 14); } else { soc_r = compliment & 0x7FFF; soc_r = ((soc_r * 10000) / (0x1 << 14)); } if (fuelgauge->init_start) { if (fuelgauge->temperature < fuelgauge->low_temp_limit) { s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data); if (data[1] != 0) { fuelgauge->ui_soc = soc_r / 100; fuelgauge->capacity_old = soc_r / 100; fuelgauge->initial_update_of_soc = false; } } } fuelgauge->init_start = 0; /* Save UI SOC for maintain SOC, after low temperature reset */ data[0] = fuelgauge->ui_soc; data[1] = 0; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data[0]); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE + 1, data[1]); /* Print UI SOC & saved value for debugging */ s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOC_R_SAVE, data); ui_soc = (data[1] << 8) | (data[0]); pr_info("%s: saved UI SOC = %d, data[1] = 0x%02x, data[0] = 0x%02x\n", __func__, ui_soc, data[1], data[0]); return soc_r; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } #if DEBUG #define S2MU107_REG_RSOCR 0x82 #define S2MU107_REG_RSOH 0x84 #define S2MU107_REG_RRM 0x8A #define S2MU107_REG_RFCC 0x8C static int s2mu107_get_socr(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int socr; mutex_lock(&fuelgauge->fg_lock); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOCR, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); if (compliment & (0x1 << 15)) { /* Negative */ socr = ((~compliment) & 0xFFFF) + 1; socr = (socr * (-10000)) / (0x1 << 14); } else { socr = compliment & 0x7FFF; socr = ((socr * 10000) / (0x1 << 14)); } return socr; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_get_soh(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int soh; mutex_lock(&fuelgauge->fg_lock); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RSOH, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); if (compliment & (0x1 << 15)) { /* Negative */ soh = ((~compliment) & 0xFFFF) + 1; soh = (soh * (-10000)) / (0x1 << 14); } else { soh = compliment & 0x7FFF; soh = ((soh * 10000) / (0x1 << 14)); } return soh; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_get_rm(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int rm; mutex_lock(&fuelgauge->fg_lock); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RRM, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); rm = (compliment * 100) / (0x1 << 2); return rm; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_get_fcc(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int fcc; mutex_lock(&fuelgauge->fg_lock); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RFCC, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); fcc = (compliment * 100) / (0x1 << 2); return fcc; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_get_cycle(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment, cycle; mutex_lock(&fuelgauge->fg_lock); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_CYCLE); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0) goto err; compliment = (data[1] << 8) | (data[0]); cycle = compliment; mutex_unlock(&fuelgauge->fg_lock); return cycle; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } #endif static int s2mu107_get_soc(struct s2mu107_fuelgauge_data *fuelgauge) { int ret = 0; struct power_supply *psy; union power_supply_propval value; s2mu107_fg_check_surge(fuelgauge); /* Get UI SOC from battery driver */ psy = power_supply_get_by_name("battery"); if (!psy) return -EINVAL; ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); fuelgauge->ui_soc = value.intval; /* TODO: Need to add avoiding first 0 degree */ /* Get temperature from battery driver */ ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &value); if (ret < 0) pr_err("%s: Fail to execute property\n", __func__); fuelgauge->temperature = value.intval; /* Get raw SOC */ fuelgauge->soc_m = s2mu107_get_raw_soc(fuelgauge); /* Get compensated SOC */ fuelgauge->soc_r = s2mu107_get_compen_soc(fuelgauge); dev_info(&fuelgauge->i2c->dev, "%s: current_raw_soc (%d), current_compen_soc (%d), " "previous_soc (%d), FG_mode(%s)\n", __func__, fuelgauge->soc_m, fuelgauge->soc_r, fuelgauge->info.soc, mode_to_str[fuelgauge->mode]); #if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN) fuelgauge->info.soc = fuelgauge->soc_r; #else fuelgauge->info.soc = fuelgauge->soc_m; #endif /* Collect other informations */ fuelgauge->avg_curr = s2mu107_get_avgcurrent(fuelgauge); fuelgauge->avg_vbat = s2mu107_get_avgvbat(fuelgauge); fuelgauge->vbat = s2mu107_get_vbat(fuelgauge); fuelgauge->curr = s2mu107_get_current(fuelgauge); /* Fuel guage mode control */ s2mu107_fg_update_mode(fuelgauge); #if DEBUG /* TODO: Print information */ fuelgauge->socr = s2mu107_get_socr(fuelgauge); fuelgauge->soh = s2mu107_get_soh(fuelgauge); fuelgauge->rm = s2mu107_get_rm(fuelgauge); fuelgauge->fcc = s2mu107_get_fcc(fuelgauge); fuelgauge->cycle = s2mu107_get_cycle(fuelgauge); pr_info("%s: avg_curr = %d, curr = %d, avg_vbat = %d, vbat = %d, " "socr = %d, soh = %d, rm = %d, fcc = %d, cycle = %d, IC temp = %d, batt temp = %d\n", __func__, fuelgauge->avg_curr, fuelgauge->curr, fuelgauge->avg_vbat, fuelgauge->vbat, fuelgauge->socr, fuelgauge->soh, fuelgauge->rm, fuelgauge->fcc, fuelgauge->cycle, s2mu107_get_temperature(fuelgauge), fuelgauge->temperature); #endif s2mu107_fg_low_vbat_WA(fuelgauge); s2mu107_fg_test_read(fuelgauge->i2c); return min(fuelgauge->info.soc, 10000); } static int s2mu107_get_current(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int curr = 0; if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RCUR_CC, data) < 0) return -EINVAL; compliment = (data[1] << 8) | (data[0]); dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment); if (compliment & (0x1 << 15)) { /* Charging */ curr = ((~compliment) & 0xFFFF) + 1; curr = (curr * 1000) >> 11; } else { /* dischaging */ curr = compliment & 0x7FFF; curr = (curr * (-1000)) >> 11; } dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr); return curr; } static int s2mu107_get_ocv(struct s2mu107_fuelgauge_data *fuelgauge) { int *soc_arr; int *ocv_arr; int soc = fuelgauge->info.soc; int ocv = 0; int high_index = TABLE_SIZE - 1; int low_index = 0; int mid_index = 0; #if defined(CONFIG_BATTERY_AGE_FORECAST) soc_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].soc_arr_val; ocv_arr = fuelgauge->age_data_info[fuelgauge->fg_age_step].ocv_arr_val; #else soc_arr = fuelgauge->info.soc_arr_val; ocv_arr = fuelgauge->info.ocv_arr_val; #endif dev_err(&fuelgauge->i2c->dev, "%s: soc (%d) soc_arr[TABLE_SIZE-1] (%d) ocv_arr[TABLE_SIZE-1) (%d)\n", __func__, soc, soc_arr[TABLE_SIZE-1], ocv_arr[TABLE_SIZE-1]); if (soc <= soc_arr[TABLE_SIZE - 1]) { ocv = ocv_arr[TABLE_SIZE - 1]; goto ocv_soc_mapping; } else if (soc >= soc_arr[0]) { ocv = ocv_arr[0]; goto ocv_soc_mapping; } while (low_index <= high_index) { mid_index = (low_index + high_index) >> 1; if (soc_arr[mid_index] > soc) low_index = mid_index + 1; else if (soc_arr[mid_index] < soc) high_index = mid_index - 1; else { ocv = ocv_arr[mid_index]; goto ocv_soc_mapping; } } if ((high_index >= 0 && high_index < TABLE_SIZE) && (low_index >= 0 && low_index < TABLE_SIZE)) { ocv = ocv_arr[high_index]; ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) * (soc - soc_arr[high_index])) / (soc_arr[low_index] - soc_arr[high_index]); } ocv_soc_mapping: dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d)\n", __func__, soc, ocv); return ocv; } static int s2mu107_get_avgcurrent(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment; int curr = 0; mutex_lock(&fuelgauge->fg_lock); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGCURR); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); dev_dbg(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x)\n", __func__, compliment); if (compliment & (0x1 << 15)) { /* Charging */ curr = ((~compliment) & 0xFFFF) + 1; curr = (curr * 1000) >> 11; } else { /* dischaging */ curr = compliment & 0x7FFF; curr = (curr * (-1000)) >> 11; } dev_info(&fuelgauge->i2c->dev, "%s: avg current (%d)mA\n", __func__, curr); return curr; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static int s2mu107_maintain_avgcurrent( struct s2mu107_fuelgauge_data *fuelgauge) { static int cnt; int vcell = 0; int curr = 0; curr = s2mu107_get_avgcurrent(fuelgauge); vcell = s2mu107_get_vbat(fuelgauge); if ((cnt < 10) && (curr < 0) && (fuelgauge->is_charging) && (vcell < 3500)) { curr = 1; cnt++; dev_info(&fuelgauge->i2c->dev, "%s: vcell (%d)mV, modified avg current (%d)mA\n", __func__, vcell, curr); } return curr; } static int s2mu107_get_vbat(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u32 vbat = 0; if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_RVBAT, data) < 0) return -EINVAL; dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]); vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13; dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d)\n", __func__, vbat); return vbat; } static int s2mu107_get_avgvbat(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data[2]; u16 compliment, avg_vbat; mutex_lock(&fuelgauge->fg_lock); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_MONOUT_SEL, S2MU107_MONOUT_SEL_AVGVBAT); if (s2mu107_read_reg(fuelgauge->i2c, S2MU107_REG_MONOUT, data) < 0) goto err; mutex_unlock(&fuelgauge->fg_lock); compliment = (data[1] << 8) | (data[0]); avg_vbat = (compliment * 1000) >> 12; dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, avg_vbat); return avg_vbat; err: mutex_unlock(&fuelgauge->fg_lock); return -EINVAL; } static void s2mu107_fuelalert_init(struct s2mu107_fuelgauge_data *fuelgauge) { u8 data; fuelgauge->is_fuel_alerted = false; mutex_lock(&fuelgauge->fg_lock); /* VBAT Threshold setting: 3.55V */ data = (fuelgauge->pdata->fuel_alert_soc << 4) | 0x0F; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_ALERT_LVL, data); /* VBAT, SOC IRQ enable */ s2mu107_update_reg_byte(fuelgauge->i2c, S2MU107_REG_IRQ_M, 0x00, 0x03); mutex_unlock(&fuelgauge->fg_lock); pr_info("%s: irq_reg(%02x) irq(%d)\n", __func__, data, fuelgauge->pdata->fg_irq); } static void s2mu107_fg_isr_work(struct work_struct *work) { struct s2mu107_fuelgauge_data *fuelgauge = container_of(work, struct s2mu107_fuelgauge_data, isr_work.work); u8 fg_alert_status = 0; s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_STATUS, &fg_alert_status); dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n", __func__, fg_alert_status); fg_alert_status &= 0x03; if (fg_alert_status & 0x01) pr_info("%s : Battery Level(SOC) is very Low!\n", __func__); if (fg_alert_status & 0x02) { int voltage = s2mu107_get_vbat(fuelgauge); pr_info("%s : Battery Votage is very Low! (%dmV)\n", __func__, voltage); } if (!fg_alert_status) { fuelgauge->is_fuel_alerted = false; pr_info("%s : SOC or Voltage is Good!\n", __func__); wake_unlock(&fuelgauge->fuel_alert_wake_lock); } } static irqreturn_t s2mu107_fg_irq_thread(int irq, void *irq_data) { struct s2mu107_fuelgauge_data *fuelgauge = irq_data; u8 fg_irq = 0; s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_IRQ, &fg_irq); dev_info(&fuelgauge->i2c->dev, "%s: fg_irq(0x%x)\n", __func__, fg_irq); if (fuelgauge->is_fuel_alerted) { return IRQ_HANDLED; } else { wake_lock(&fuelgauge->fuel_alert_wake_lock); fuelgauge->is_fuel_alerted = true; schedule_delayed_work(&fuelgauge->isr_work, 0); } return IRQ_HANDLED; } #if defined(CONFIG_BATTERY_AGE_FORECAST) static int s2mu107_fg_aging_check( struct s2mu107_fuelgauge_data *fuelgauge, int step) { u8 batcap0 = 0, batcap1 = 0, batcap2 = 0, batcap3 = 0; u8 por_state = 0; union power_supply_propval value; int charging_enabled = false; fuelgauge->fg_age_step = step; s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV, &batcap0); s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP_OCV + 1, &batcap1); s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP, &batcap2); s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_RBATCAP + 1, &batcap3); pr_info("%s: [Long life] orig. batcap : %02x, %02x, %02x, %02x , fg_age_step data : %02x, %02x, %02x, %02x \n", __func__, batcap0, batcap1, batcap2, batcap3, fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0], fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1], fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2], fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3]); if ((batcap0 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[0]) || (batcap1 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[1]) || (batcap2 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[2]) || (batcap3 != fuelgauge->age_data_info[fuelgauge->fg_age_step].batcap[3])) { pr_info("%s: [Long life] reset gauge for age forecast , step[%d] \n", __func__, fuelgauge->fg_age_step); mutex_lock(&fuelgauge->fg_lock); fuelgauge->age_reset_status = 1; por_state |= 0x10; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, por_state); /* check charging enable */ psy_do_property(fuelgauge->pdata->charger_name, get, POWER_SUPPLY_PROP_CHARGING_ENABLED, value); charging_enabled = value.intval; if (charging_enabled == true) { pr_info("%s: [Long life] disable charger for reset gauge age forecast \n", __func__); value.intval = SEC_BAT_CHG_MODE_CHARGING_OFF; psy_do_property(fuelgauge->pdata->charger_name, set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value); } s2mu107_reset_fg(fuelgauge); if (charging_enabled == true) { psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value); charging_enabled = value.intval; if (charging_enabled == 1) { /* POWER_SUPPLY_STATUS_CHARGING 1 */ pr_info("%s: [Long life] enable charger for reset gauge age forecast \n", __func__); value.intval = SEC_BAT_CHG_MODE_CHARGING; psy_do_property(fuelgauge->pdata->charger_name, set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value); } } por_state &= ~0x10; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, por_state); fuelgauge->age_reset_status = 0; mutex_unlock(&fuelgauge->fg_lock); return 1; } return 0; } #endif /* capacity is 0.1% unit */ static void s2mu107_fg_get_scaled_capacity( struct s2mu107_fuelgauge_data *fuelgauge, union power_supply_propval *val) { int rawsoc = val->intval; val->intval = (val->intval < fuelgauge->pdata->capacity_min) ? 0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 / (fuelgauge->capacity_max - fuelgauge->pdata->capacity_min)); dev_info(&fuelgauge->i2c->dev, "%s: capacity_max(%d) scaled capacity(%d.%d), raw_soc(%d.%d)\n", __func__, fuelgauge->capacity_max, val->intval/10, val->intval%10, rawsoc/10, rawsoc%10); } /* capacity is integer */ static void s2mu107_fg_get_atomic_capacity( struct s2mu107_fuelgauge_data *fuelgauge, union power_supply_propval *val) { if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) { if (fuelgauge->capacity_old < val->intval) val->intval = fuelgauge->ui_soc + 1; else if (fuelgauge->capacity_old > val->intval) val->intval = fuelgauge->ui_soc - 1; } /* keep SOC stable in abnormal status */ if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) { if (!fuelgauge->is_charging && fuelgauge->capacity_old < val->intval) { dev_err(&fuelgauge->i2c->dev, "%s: capacity (old %d : new %d, ui_soc %d)\n", __func__, fuelgauge->capacity_old, val->intval, fuelgauge->ui_soc); val->intval = fuelgauge->ui_soc; } } /* updated old capacity */ fuelgauge->capacity_old = val->intval; } static int s2mu107_fg_check_capacity_max( struct s2mu107_fuelgauge_data *fuelgauge, int capacity_max) { int new_capacity_max = capacity_max; if (new_capacity_max < (fuelgauge->pdata->capacity_max - fuelgauge->pdata->capacity_max_margin - 10)) { new_capacity_max = (fuelgauge->pdata->capacity_max - fuelgauge->pdata->capacity_max_margin); dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n", __func__, capacity_max, new_capacity_max); } else if (new_capacity_max > (fuelgauge->pdata->capacity_max + fuelgauge->pdata->capacity_max_margin)) { new_capacity_max = (fuelgauge->pdata->capacity_max + fuelgauge->pdata->capacity_max_margin); dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n", __func__, capacity_max, new_capacity_max); } return new_capacity_max; } static int s2mu107_fg_calculate_dynamic_scale( struct s2mu107_fuelgauge_data *fuelgauge, int capacity, bool scale_by_full) { union power_supply_propval raw_soc_val; raw_soc_val.intval = s2mu107_get_soc(fuelgauge) / 10; if (raw_soc_val.intval < fuelgauge->pdata->capacity_max - fuelgauge->pdata->capacity_max_margin) { pr_info("%s: raw soc(%d) is very low, skip routine\n", __func__, raw_soc_val.intval); } else if (fuelgauge->capacity_max_conv) { pr_info("%s: skip dynamic scale routine\n", __func__); } else { fuelgauge->capacity_max = (raw_soc_val.intval * 100 / (capacity + 1)); fuelgauge->capacity_old = capacity; fuelgauge->capacity_max = s2mu107_fg_check_capacity_max(fuelgauge, fuelgauge->capacity_max); pr_info("%s: %d is used for capacity_max, capacity(%d)\n", __func__, fuelgauge->capacity_max, capacity); if ((capacity == 100) && !fuelgauge->capacity_max_conv && scale_by_full) { fuelgauge->capacity_max_conv = true; fuelgauge->g_capacity_max = raw_soc_val.intval; pr_info("%s: Goal capacity max %d\n", __func__, fuelgauge->g_capacity_max); } } return fuelgauge->capacity_max; } static int s2mu107_fg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct s2mu107_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy); static struct timespec old_ts = {0, }; struct timespec c_ts = {0, }; switch (psp) { case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CHARGE_FULL: return -ENODATA; case POWER_SUPPLY_PROP_CHARGE_COUNTER: val->intval = fuelgauge->pdata->capacity_full * fuelgauge->raw_capacity; break; case POWER_SUPPLY_PROP_ENERGY_NOW: switch (val->intval) { case SEC_BATTERY_CAPACITY_DESIGNED: val->intval = fuelgauge->pdata->capacity_full; break; case SEC_BATTERY_CAPACITY_ABSOLUTE: val->intval = 0; break; case SEC_BATTERY_CAPACITY_TEMPERARY: val->intval = 0; break; case SEC_BATTERY_CAPACITY_CURRENT: val->intval = 0; break; case SEC_BATTERY_CAPACITY_AGEDCELL: val->intval = 0; break; case SEC_BATTERY_CAPACITY_CYCLE: val->intval = 0; break; case SEC_BATTERY_CAPACITY_FULL: val->intval = fuelgauge->pdata->capacity_full; break; } break; /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = s2mu107_get_vbat(fuelgauge); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case SEC_BATTERY_VOLTAGE_AVERAGE: val->intval = s2mu107_get_avgvbat(fuelgauge); break; case SEC_BATTERY_VOLTAGE_OCV: val->intval = s2mu107_get_ocv(fuelgauge); break; } break; /* Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_NOW: if (val->intval == SEC_BATTERY_CURRENT_UA) val->intval = s2mu107_get_current(fuelgauge) * 1000; else val->intval = s2mu107_get_current(fuelgauge); break; /* Average Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_AVG: if (val->intval == SEC_BATTERY_CURRENT_UA) val->intval = s2mu107_maintain_avgcurrent(fuelgauge) * 1000; else val->intval = s2mu107_maintain_avgcurrent(fuelgauge); break; case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) { val->intval = s2mu107_get_soc(fuelgauge); } else { val->intval = s2mu107_get_soc(fuelgauge) / 10; if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_SCALE | SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)) { if (fuelgauge->capacity_max_conv) { c_ts = ktime_to_timespec(ktime_get_boottime()); pr_info("%s : capacit max conv time(%ld)\n", __func__, c_ts.tv_sec - old_ts.tv_sec); if ((fuelgauge->capacity_max < fuelgauge->g_capacity_max) && ((unsigned long)(c_ts.tv_sec - old_ts.tv_sec) >= 60)) { fuelgauge->capacity_max++; old_ts = c_ts; } else if (fuelgauge->capacity_max >= fuelgauge->g_capacity_max) { fuelgauge->g_capacity_max = 0; fuelgauge->capacity_max_conv = false; } pr_info("%s : capacity_max_conv(%d) Capacity Max(%d | %d)\n", __func__, fuelgauge->capacity_max_conv, fuelgauge->capacity_max, fuelgauge->g_capacity_max); } s2mu107_fg_get_scaled_capacity(fuelgauge, val); if (val->intval > 1010) { pr_info("%s : scaled capacity (%d)\n", __func__, val->intval); s2mu107_fg_calculate_dynamic_scale(fuelgauge, 100, false); } } /* capacity should be between 0% and 100% * (0.1% degree) */ if (val->intval > 1000) val->intval = 1000; if (val->intval < 0) val->intval = 0; fuelgauge->raw_capacity = val->intval; /* get only integer part */ val->intval /= 10; /* check whether doing the wake_unlock */ if ((val->intval > fuelgauge->pdata->fuel_alert_soc) && fuelgauge->is_fuel_alerted) { wake_unlock(&fuelgauge->fuel_alert_wake_lock); s2mu107_fuelalert_init(fuelgauge); } /* (Only for atomic capacity) * In initial time, capacity_old is 0. * and in resume from sleep, * capacity_old is too different from actual soc. * should update capacity_old * by val->intval in booting or resume. */ if (fuelgauge->initial_update_of_soc && (fuelgauge->temperature > fuelgauge->low_temp_limit)) { /* updated old capacity */ fuelgauge->capacity_old = val->intval; fuelgauge->initial_update_of_soc = false; break; } if (fuelgauge->sleep_initial_update_of_soc) { /* updated old capacity in case of resume */ if (fuelgauge->is_charging) { fuelgauge->capacity_old = val->intval; fuelgauge->sleep_initial_update_of_soc = false; break; } else if ((!fuelgauge->is_charging) && (fuelgauge->capacity_old >= val->intval)) { fuelgauge->capacity_old = val->intval; fuelgauge->sleep_initial_update_of_soc = false; break; } } if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC | SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL)) s2mu107_fg_get_atomic_capacity(fuelgauge, val); } break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = s2mu107_get_temperature(fuelgauge); break; case POWER_SUPPLY_PROP_ENERGY_FULL: fuelgauge->soh = s2mu107_get_soh(fuelgauge); val->intval = fuelgauge->soh / 100; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = fuelgauge->capacity_max; break; case POWER_SUPPLY_PROP_SCOPE: val->intval = fuelgauge->mode; break; case POWER_SUPPLY_PROP_SOH: fuelgauge->soh = s2mu107_get_soh(fuelgauge); val->intval = fuelgauge->soh; break; default: return -EINVAL; } return 0; } static int s2mu107_fg_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct s2mu107_fuelgauge_data *fuelgauge = power_supply_get_drvdata(psy); enum power_supply_ext_property ext_psp = (enum power_supply_ext_property) psp; u8 temp = 0; switch (psp) { case POWER_SUPPLY_PROP_STATUS: #if defined(CONFIG_BATTERY_AGE_FORECAST) if (val->intval == POWER_SUPPLY_STATUS_FULL) s2mu107_fg_aging_check(fuelgauge, fuelgauge->change_step); #endif break; case POWER_SUPPLY_PROP_CHARGE_FULL: if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) { s2mu107_fg_calculate_dynamic_scale(fuelgauge, val->intval, true); } break; case POWER_SUPPLY_PROP_ONLINE: fuelgauge->cable_type = val->intval; break; case POWER_SUPPLY_PROP_CHARGING_ENABLED: if (val->intval == SEC_BAT_CHG_MODE_CHARGING) fuelgauge->is_charging = true; else fuelgauge->is_charging = false; break; case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) { s2mu107_restart_gauging(fuelgauge); fuelgauge->initial_update_of_soc = true; } break; case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TEMP_AMBIENT: s2mu107_set_temperature(fuelgauge, val->intval); fuelgauge->init_battery_temp = true; break; case POWER_SUPPLY_PROP_ENERGY_NOW: s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge); break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: dev_info(&fuelgauge->i2c->dev, "%s: capacity_max changed, %d -> %d\n", __func__, fuelgauge->capacity_max, val->intval); fuelgauge->capacity_max = s2mu107_fg_check_capacity_max(fuelgauge, val->intval); fuelgauge->initial_update_of_soc = true; break; case POWER_SUPPLY_PROP_CHARGE_EMPTY: break; case POWER_SUPPLY_PROP_ENERGY_AVG: break; case POWER_SUPPLY_PROP_CURRENT_FULL: fuelgauge->topoff_current = val->intval; break; #if defined(CONFIG_CHARGER_S2MU107_DIRECT) case POWER_SUPPLY_PROP_FAST_IAVG: fuelgauge->is_dc_charging = val->intval; s2mu107_set_tperiod(fuelgauge, fuelgauge->is_dc_charging); break; #endif case POWER_SUPPLY_PROP_MAX ... POWER_SUPPLY_EXT_PROP_MAX: switch (ext_psp) { case POWER_SUPPLY_EXT_PROP_INBAT_VOLTAGE_FGSRC_SWITCHING: if ((val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_ON) || (val->intval == SEC_BAT_FGSRC_SWITCHING_ON)) { /* Get Battery voltage (by I2C control) */ s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x10, 0x30); msleep(1000); s2mu107_read_reg_byte(fuelgauge->i2c, 0x25, &temp); pr_info("%s: SW Vbat: fgsrc_switching_on: REG25:0x%02x, 0x25[5:4]=0x%x\n", __func__, temp, (temp & 0x30) >> 4); if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_ON) s2mu107_restart_gauging(fuelgauge); s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge); s2mu107_fg_test_read(fuelgauge->i2c); } else if ((val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_OFF) || (val->intval == SEC_BAT_FGSRC_SWITCHING_OFF)) { s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x30, 0x30); msleep(1000); s2mu107_read_reg_byte(fuelgauge->i2c, 0x25, &temp); pr_info("%s: SW Vsys: fgsrc_switching_off: REG25:0x%02x, 0x25[5:4]=0x%x\n", __func__, temp, (temp & 0x30) >> 4); if (val->intval == SEC_BAT_INBAT_FGSRC_SWITCHING_OFF) s2mu107_restart_gauging(fuelgauge); s2mu107_fg_test_read(fuelgauge->i2c); } break; case POWER_SUPPLY_EXT_PROP_FUELGAUGE_FACTORY: pr_info("%s:[DEBUG_FAC] fuelgauge\n", __func__); s2mu107_update_reg_byte(fuelgauge->i2c, 0x25, 0x30, 0x30); s2mu107_fg_reset_capacity_by_jig_connection(fuelgauge); break; #if defined(CONFIG_BATTERY_AGE_FORECAST) case POWER_SUPPLY_EXT_PROP_UPDATE_BATTERY_DATA: fuelgauge->change_step = val->intval; break; #endif default: return -EINVAL; } break; default: return -EINVAL; } return 0; } static void s2mu107_init_regs(struct s2mu107_fuelgauge_data *fuelgauge) { u8 temp = 0; pr_info("%s: s2mu107 fuelgauge initialize\n", __func__); /* Save register values for surge check */ s2mu107_read_reg_byte(fuelgauge->i2c, 0x53, &temp); fuelgauge->reg_OTP_53 = temp; s2mu107_read_reg_byte(fuelgauge->i2c, 0x52, &temp); fuelgauge->reg_OTP_52 = temp; /* Disable VM3_flag_EN */ s2mu107_update_reg_byte(fuelgauge->i2c, S2MU107_REG_VM, 0x00, 0x04); s2mu107_update_reg_byte(fuelgauge->i2c, 0x0D, 0x00, ADC_AVCC_EN_MASK); s2mu107_update_reg_byte(fuelgauge->i2c, 0x29, 0x00, 0x01); } static void s2mu107_init_temp_compen(struct s2mu107_fuelgauge_data *fuelgauge) { u8 temp = 0; pr_info("%s: s2mu107 temperature compensation init\n", __func__); s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp); if (fuelgauge->pdata->inc_ok_en) temp = temp | TEMP_COMPEN_INC_OK_EN; else temp = temp & ~TEMP_COMPEN_INC_OK_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RCOMPI, (u8)fuelgauge->pdata->comp_i); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RA0, (u8)fuelgauge->pdata->a0); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RB0, (u8)fuelgauge->pdata->b0); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RA1, (u8)fuelgauge->pdata->a1); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_RB1, (u8)fuelgauge->pdata->b1); s2mu107_write_disable(fuelgauge->i2c); } static void s2mu107_init_batcap_learn(struct s2mu107_fuelgauge_data *fuelgauge) { u8 temp = 0; #if defined(CONFIG_FUELGAUGE_S2MU107_BATCAP_LRN) pr_info("%s: s2mu107 battery capacity learning init\n", __func__); s2mu107_read_reg_byte(fuelgauge->i2c, 0x67, &temp); if (fuelgauge->pdata->fast_lrn_en) temp = temp | BATCAP_LEARN_FAST_LRN_EN; else temp = temp & ~BATCAP_LEARN_FAST_LRN_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x67, temp); s2mu107_read_reg_byte(fuelgauge->i2c, 0x6B, &temp); temp = temp | ((fuelgauge->pdata->no4learn << 4) & BATCAP_LEARN_NO4LEARN_MASK); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6B, temp); s2mu107_read_reg_byte(fuelgauge->i2c, 0x6D, &temp); if (fuelgauge->pdata->auto_lrn_en) temp = temp | BATCAP_LEARN_AUTO_LRN_EN; else temp = temp & ~BATCAP_LEARN_AUTO_LRN_EN; if (fuelgauge->pdata->wide_lrn_en) temp = temp | BATCAP_LEARN_WIDE_LRN_EN; else temp = temp & ~BATCAP_LEARN_WIDE_LRN_EN; if (fuelgauge->pdata->low_en) temp = temp | BATCAP_LEARN_LOW_EN; else temp = temp & ~BATCAP_LEARN_LOW_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6D, temp); temp = (fuelgauge->pdata->c1_num & BATCAP_LEARN_C1_NUM_MASK) | ((fuelgauge->pdata->c2_num << 2) & BATCAP_LEARN_C2_NUM_MASK) | ((fuelgauge->pdata->c1_curr << 4) & BATCAP_LEARN_C1_CURR_MASK); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x46, temp); #else pr_info("%s: battery capacity learning is not enabled. Disable.\n", __func__); s2mu107_read_reg_byte(fuelgauge->i2c, 0x6D, &temp); temp = temp & ~BATCAP_LEARN_AUTO_LRN_EN; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x6D, temp); #endif } #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) static void s2mu107_set_trim_10mohm(struct s2mu107_fuelgauge_data *fuelgauge) { u8 temp_58, temp_59, temp_5a, temp_5b; u32 cslope = 0, coffset = 0; s2mu107_read_reg_byte(fuelgauge->i2c, 0x58, &temp_58); s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59); s2mu107_read_reg_byte(fuelgauge->i2c, 0x5A, &temp_5a); s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b); cslope = ((temp_5b & 0xF0) << 12) | (temp_59 << 8) | temp_58; coffset = ((temp_5b & 0x0F) << 8) | temp_5a; pr_info("%s: before cslope = 0x%x, coffset = 0x%x", __func__, cslope, coffset); cslope = (cslope ^ 0xFFFFF) + 1; cslope = cslope / 2; cslope = (cslope ^ 0xFFFFF) + 1; if (coffset & (1 << 11)) { coffset = (coffset ^ 0xFFF) + 1; coffset = coffset / 2; coffset = (coffset ^ 0xFFF) + 1; } else { coffset = coffset / 2; } s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x58, (cslope & 0xFF)); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x59, (cslope & 0xFF00) >> 8); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x5B, (cslope & 0xF0000) >> 12, 0xF0); s2mu107_update_reg_byte_no_en(fuelgauge->i2c, 0x5B, (coffset & 0xF00) >> 8, 0x0F); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, 0x5A, (coffset & 0xFF)); s2mu107_write_disable(fuelgauge->i2c); /* Check written value */ s2mu107_read_reg_byte(fuelgauge->i2c, 0x58, &temp_58); s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59); s2mu107_read_reg_byte(fuelgauge->i2c, 0x5A, &temp_5a); s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b); cslope = ((temp_5b & 0xF0) << 12) | (temp_59 << 8) | temp_58; coffset = ((temp_5b & 0x0F) << 8) | temp_5a; pr_info("%s: after cslope = 0x%x, coffset = 0x%x", __func__, cslope, coffset); } #endif #if defined(CONFIG_CHARGER_S2MU107_DIRECT) static void s2mu107_set_tperiod(struct s2mu107_fuelgauge_data *fuelgauge, bool is_dc_charging) { if (is_dc_charging == true) { /* Set refresh period, 250ms -> 63ms */ pr_info("%s: dc charging. Decrease Tperiod\n", __func__); s2mu107_update_reg_byte(fuelgauge->i2c, 0x45, T_PERIOD_63MS << T_PEROID_SHIFT, T_PERIOD_MASK); } else { pr_info("%s: Recover Tperiod\n", __func__); s2mu107_update_reg_byte(fuelgauge->i2c, 0x45, T_PERIOD_250MS << T_PEROID_SHIFT, T_PERIOD_MASK); } } static void s2mu107_init_for_direct_charge(struct s2mu107_fuelgauge_data *fuelgauge) { pr_info("%s: s2mu107 fuelgauge init for direct charge\n", __func__); s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x7A, 0xB3); } #endif #ifdef CONFIG_OF static int s2mu107_fuelgauge_parse_dt(struct s2mu107_fuelgauge_data *fuelgauge) { struct device_node *np = of_find_node_by_name(NULL, "s2mu107-fuelgauge"); int ret; #if defined(CONFIG_BATTERY_AGE_FORECAST) int len, i; #endif /* reset, irq gpio info */ if (np == NULL) { pr_err("%s np NULL\n", __func__); } else { ret = of_property_read_string(np, "fuelgauge,charger_name", (char const **)&fuelgauge->pdata->charger_name); if (ret < 0) { fuelgauge->pdata->charger_name = "s2mu107-switching-charger"; pr_info("%s: Charger name is Empty. Use default charger name %s\n", __func__, fuelgauge->pdata->charger_name); } fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0); if (fuelgauge->pdata->fg_irq < 0) pr_err("%s error reading fg_irq = %d\n", __func__, fuelgauge->pdata->fg_irq); ret = of_property_read_u32(np, "fuelgauge,fuel_alert_vol", &fuelgauge->pdata->fuel_alert_vol); if (ret < 0) { fuelgauge->pdata->fuel_alert_vol = 3300; pr_err("%s Default value of fuel_alert_vol : %d\n", __func__, fuelgauge->pdata->fuel_alert_vol); } ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc", &fuelgauge->pdata->fuel_alert_soc); if (ret < 0) pr_err("%s error reading pdata->fuel_alert_soc %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_max", &fuelgauge->pdata->capacity_max); if (ret < 0) pr_err("%s error reading capacity_max %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin", &fuelgauge->pdata->capacity_max_margin); if (ret < 0) pr_err("%s error reading capacity_max_margin %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_min", &fuelgauge->pdata->capacity_min); if (ret < 0) pr_err("%s error reading capacity_min %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type", &fuelgauge->pdata->capacity_calculation_type); if (ret < 0) pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_full", &fuelgauge->pdata->capacity_full); if (ret < 0) pr_err("%s error reading pdata->capacity_full %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,low_temp_limit", &fuelgauge->low_temp_limit); if (ret < 0) { pr_err("%s There is no low temperature limit. Use default(100)\n", __func__); fuelgauge->low_temp_limit = 100; } ret = of_property_read_u32(np, "fuelgauge,low_vbat_threshold", &fuelgauge->low_vbat_threshold); if (ret < 0) { pr_err("%s There is no low vbat threshold. Use default(3450)\n", __func__); fuelgauge->low_vbat_threshold = 3450; } ret = of_property_read_u32(np, "fuelgauge,low_vbat_threshold_lowtemp", &fuelgauge->low_vbat_threshold_lowtemp); if (ret < 0) { pr_err("%s There is no low vbat threshold low temp. Use default(3450)\n", __func__); fuelgauge->low_vbat_threshold_lowtemp = 3450; } /* Get values for temperature compensation */ ret = of_property_read_u32(np, "fuelgauge,inc_ok_en", &fuelgauge->pdata->inc_ok_en); if (ret < 0) { fuelgauge->pdata->inc_ok_en = 0; pr_err("%s There is no inc_ok_en. Use default value, %d\n", __func__, fuelgauge->pdata->inc_ok_en); } ret = of_property_read_u32(np, "fuelgauge,comp_i", &fuelgauge->pdata->comp_i); if (ret < 0) { fuelgauge->pdata->comp_i = 0x11; pr_err("%s There is no comp_i. Use default value, %d\n", __func__, fuelgauge->pdata->comp_i); } ret = of_property_read_u32(np, "fuelgauge,a0", &fuelgauge->pdata->a0); if (ret < 0) { fuelgauge->pdata->a0 = 0x40; pr_err("%s There is no a0. Use default value, %d\n", __func__, fuelgauge->pdata->a0); } ret = of_property_read_u32(np, "fuelgauge,b0", &fuelgauge->pdata->b0); if (ret < 0) { fuelgauge->pdata->b0 = 0x00; pr_err("%s There is no b0. Use default value, %d\n", __func__, fuelgauge->pdata->b0); } ret = of_property_read_u32(np, "fuelgauge,a1", &fuelgauge->pdata->a1); if (ret < 0) { fuelgauge->pdata->a1 = 0x7F; pr_err("%s There is no a1. Use default value, %d\n", __func__, fuelgauge->pdata->a1); } ret = of_property_read_u32(np, "fuelgauge,b1", &fuelgauge->pdata->b1); if (ret < 0) { fuelgauge->pdata->b1 = 0x00; pr_err("%s There is no b1. Use default value, %d\n", __func__, fuelgauge->pdata->b1); } /* Get values for battery capacity learning */ ret = of_property_read_u32(np, "fuelgauge,fast_lrn_en", &fuelgauge->pdata->fast_lrn_en); if (ret < 0) { fuelgauge->pdata->fast_lrn_en = 0; pr_err("%s There is no fast_lrn_en. Use default value, %d\n", __func__, fuelgauge->pdata->fast_lrn_en); } ret = of_property_read_u32(np, "fuelgauge,no4learn", &fuelgauge->pdata->no4learn); if (ret < 0) { fuelgauge->pdata->no4learn = 0x01; pr_err("%s There is no no4learn. Use default value, %d\n", __func__, fuelgauge->pdata->no4learn); } ret = of_property_read_u32(np, "fuelgauge,auto_lrn_en", &fuelgauge->pdata->auto_lrn_en); if (ret < 0) { fuelgauge->pdata->auto_lrn_en = 1; pr_err("%s There is no auto_lrn_en. Use default value, %d\n", __func__, fuelgauge->pdata->auto_lrn_en); } ret = of_property_read_u32(np, "fuelgauge,wide_lrn_en", &fuelgauge->pdata->wide_lrn_en); if (ret < 0) { fuelgauge->pdata->wide_lrn_en = 0; pr_err("%s There is no wide_lrn_en. Use default value, %d\n", __func__, fuelgauge->pdata->wide_lrn_en); } ret = of_property_read_u32(np, "fuelgauge,low_en", &fuelgauge->pdata->low_en); if (ret < 0) { fuelgauge->pdata->low_en = 0; pr_err("%s There is no low_en. Use default value, %d\n", __func__, fuelgauge->pdata->low_en); } ret = of_property_read_u32(np, "fuelgauge,c1_num", &fuelgauge->pdata->c1_num); if (ret < 0) { fuelgauge->pdata->c1_num = 2; pr_err("%s There is no c1_num. Use default value, %d\n", __func__, fuelgauge->pdata->c1_num); } ret = of_property_read_u32(np, "fuelgauge,c2_num", &fuelgauge->pdata->c2_num); if (ret < 0) { fuelgauge->pdata->c2_num = 2; pr_err("%s There is no c2_num. Use default value, %d\n", __func__, fuelgauge->pdata->c2_num); } ret = of_property_read_u32(np, "fuelgauge,c1_curr", &fuelgauge->pdata->c1_curr); if (ret < 0) { fuelgauge->pdata->c1_curr = 0x0b; pr_err("%s There is no c1_curr. Use default value, %d\n", __func__, fuelgauge->pdata->c1_curr); } /* get topoff info */ np = of_find_node_by_name(NULL, "cable-info"); if (!np) { pr_err("%s np NULL\n", __func__); } else { ret = of_property_read_u32(np, "full_check_current_1st", &fuelgauge->topoff_current); if (ret < 0) { pr_err("%s fail to get topoff current %d\n", __func__, ret); fuelgauge->topoff_current = 500; } } np = of_find_node_by_name(NULL, "battery"); if (!np) { pr_err("%s np NULL\n", __func__); } else { ret = of_property_read_string(np, "battery,fuelgauge_name", (char const **)&fuelgauge->pdata->fuelgauge_name); } /* get battery node */ np = of_find_node_by_name(NULL, "battery_params"); if (!np) { pr_err("%s battery_params node NULL\n", __func__); } else { #if !defined(CONFIG_BATTERY_AGE_FORECAST) /* get battery_table */ ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88); if (ret < 0) pr_err("%s error reading battery,battery_table3\n", __func__); ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22); if (ret < 0) pr_err("%s error reading battery,battery_table4\n", __func__); ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4); if (ret < 0) pr_err("%s error reading battery,batcap\n", __func__); ret = of_property_read_u32_array(np, "battery,accum", fuelgauge->info.accum, 2); if (ret < 0) { fuelgauge->info.accum[0]=0x00; // REG 0x44 fuelgauge->info.accum[1]=0x08; // REG 0x45 pr_err("%s There is no accumulative rate value in DT. set to the default value(0x800)\n", __func__); } ret = of_property_read_u32_array(np, "battery,soc_arr_val", fuelgauge->info.soc_arr_val, 22); if (ret < 0) pr_err("%s error reading battery,soc_arr_val\n", __func__); ret = of_property_read_u32_array(np, "battery,ocv_arr_val", fuelgauge->info.ocv_arr_val, 22); if (ret < 0) pr_err("%s error reading battery,ocv_arr_val\n", __func__); #else of_get_property(np, "battery,battery_data", &len); fuelgauge->fg_num_age_step = len / sizeof(fg_age_data_info_t); fuelgauge->age_data_info = kzalloc(len, GFP_KERNEL); ret = of_property_read_u32_array(np, "battery,battery_data", (int *)fuelgauge->age_data_info, len/sizeof(int)); pr_err("%s: [Long life] fuelgauge->fg_num_age_step %d \n", __func__,fuelgauge->fg_num_age_step); for(i=0 ; i < fuelgauge->fg_num_age_step ; i++){ pr_err("%s: [Long life] age_step = %d, table3[0] %d, table4[0] %d, batcap[0] %02x, accum[0] %02x, soc_arr[0] %d, ocv_arr[0] %d, volt_tun : %02x\n", __func__, i, fuelgauge->age_data_info[i].battery_table3[0], fuelgauge->age_data_info[i].battery_table4[0], fuelgauge->age_data_info[i].batcap[0], fuelgauge->age_data_info[i].accum[0], fuelgauge->age_data_info[i].soc_arr_val[0], fuelgauge->age_data_info[i].ocv_arr_val[0], fuelgauge->age_data_info[i].volt_mode_tunning); } #endif } } return 0; } static struct of_device_id s2mu107_fuelgauge_match_table[] = { { .compatible = "samsung,s2mu107-fuelgauge",}, {}, }; #else static int s2mu107_fuelgauge_parse_dt(struct s2mu107_fuelgauge_data *fuelgauge) { return -ENOSYS; } #define s2mu107_fuelgauge_match_table NULL #endif /* CONFIG_OF */ static const struct power_supply_desc s2mu107_fuelgauge_power_supply_desc = { .name = "s2mu107-fuelgauge", .type = POWER_SUPPLY_TYPE_UNKNOWN, .properties = s2mu107_fuelgauge_props, .num_properties = ARRAY_SIZE(s2mu107_fuelgauge_props), .get_property = s2mu107_fg_get_property, .set_property = s2mu107_fg_set_property, }; static int s2mu107_fuelgauge_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct s2mu107_fuelgauge_data *fuelgauge; union power_supply_propval raw_soc_val; struct power_supply_config fuelgauge_cfg = {}; int ret = 0; u8 temp = 0; #if 1 u8 por_state = 0; u8 reg_1E = 0; #endif #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) u8 temp_59, temp_5b; #endif pr_info("%s: S2MU107 Fuelgauge Driver Loading\n", __func__); if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) return -EIO; fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL); if (!fuelgauge) return -ENOMEM; mutex_init(&fuelgauge->fg_lock); fuelgauge->i2c = client; if (client->dev.of_node) { fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)), GFP_KERNEL); if (!fuelgauge->pdata) { dev_err(&client->dev, "Failed to allocate memory\n"); ret = -ENOMEM; goto err_parse_dt_nomem; } ret = s2mu107_fuelgauge_parse_dt(fuelgauge); if (ret < 0) goto err_parse_dt; } else { fuelgauge->pdata = client->dev.platform_data; } i2c_set_clientdata(client, fuelgauge); if (fuelgauge->pdata->fuelgauge_name == NULL) fuelgauge->pdata->fuelgauge_name = "s2mu107-fuelgauge"; fuelgauge_cfg.drv_data = fuelgauge; /* FG Revision Value Setting */ fuelgauge->revision = 0; s2mu107_read_reg_byte(fuelgauge->i2c, 0x48, &temp); fuelgauge->revision = (temp & 0xF0) >> 4; pr_info("%s: S2MU107 Fuelgauge revision: 0x%x, reg 0x48 = 0x%x\n", __func__, fuelgauge->revision, temp); fuelgauge->info.soc = 0; /* default CURRENT_MODE setting */ fuelgauge->mode = CURRENT_MODE; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, 0x4A, 0x10); s2mu107_update_reg_byte(fuelgauge->i2c, 0x4B, 0x00, 0x70); /* capacity Max */ fuelgauge->capacity_max = fuelgauge->pdata->capacity_max; #if 1 /* TODO: Before bootloader bring-up, * battery driver gets default SOC 56.12%. * To avoid that, check por_state for init. * This code need to be deleted after BL bring-up. */ s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START, ®_1E); s2mu107_read_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, &por_state); #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) s2mu107_read_reg_byte(fuelgauge->i2c, 0x59, &temp_59); s2mu107_read_reg_byte(fuelgauge->i2c, 0x5B, &temp_5b); if((por_state != 0x00) || (reg_1E != 0x03) || ((temp_59 == 0x20) && (temp_5b == 0xE0))) { #else if((por_state != 0x00) || (reg_1E != 0x03)) { #endif mutex_lock(&fuelgauge->fg_lock); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x40); usleep_range(10000, 11000); s2mu107_write_enable(fuelgauge->i2c); s2mu107_write_and_verify_reg_byte_no_en(fuelgauge->i2c, S2MU107_REG_START + 1, 0x01); msleep(50); s2mu107_write_disable(fuelgauge->i2c); dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__); /* If UI SOC is 0%, do not use raw SOC fix reset */ if(fuelgauge->ui_soc == 0) s2mu107_reset_fg(fuelgauge); else s2mu107_fix_rawsoc_reset_fg(fuelgauge); por_state = 0x00; s2mu107_write_and_verify_reg_byte(fuelgauge->i2c, S2MU107_REG_START + 1, por_state); #if defined(CONFIG_FUELGAUGE_S2MU107_USE_10MILLIOHM) /* TODO: s2mu107 uses 5mohm sensing resistor. But 10mohm is used, need to adjust trim value */ s2mu107_set_trim_10mohm(fuelgauge); #endif mutex_unlock(&fuelgauge->fg_lock); } #endif fuelgauge->g_capacity_max = 0; fuelgauge->capacity_max_conv = false; raw_soc_val.intval = s2mu107_get_soc(fuelgauge); raw_soc_val.intval = raw_soc_val.intval / 10; if (raw_soc_val.intval > fuelgauge->capacity_max) s2mu107_fg_calculate_dynamic_scale(fuelgauge, 100, true); s2mu107_init_regs(fuelgauge); #if defined(CONFIG_FUELGAUGE_S2MU107_TEMP_COMPEN) s2mu107_init_temp_compen(fuelgauge); #endif s2mu107_init_batcap_learn(fuelgauge); #if defined(CONFIG_CHARGER_S2MU107_DIRECT) s2mu107_init_for_direct_charge(fuelgauge); #endif fuelgauge->psy_fg = power_supply_register( &client->dev, &s2mu107_fuelgauge_power_supply_desc, &fuelgauge_cfg); if (!fuelgauge->psy_fg) { pr_err("%s: Failed to Register psy_fg\n", __func__); ret = PTR_ERR(fuelgauge->psy_fg); goto err_data_free; } fuelgauge->is_fuel_alerted = false; if (fuelgauge->pdata->fuel_alert_soc >= 0) { s2mu107_fuelalert_init(fuelgauge); wake_lock_init(&fuelgauge->fuel_alert_wake_lock, WAKE_LOCK_SUSPEND, "fuel_alerted"); if (fuelgauge->pdata->fg_irq > 0) { INIT_DELAYED_WORK(&fuelgauge->isr_work, s2mu107_fg_isr_work); fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq); dev_info(&client->dev, "%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq); if (fuelgauge->fg_irq > 0) { ret = request_threaded_irq(fuelgauge->fg_irq, NULL, s2mu107_fg_irq_thread, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "fuelgauge-irq", fuelgauge); if (ret) { dev_err(&client->dev, "%s: Failed to Request IRQ\n", __func__); goto err_supply_unreg; } ret = enable_irq_wake(fuelgauge->fg_irq); if (ret < 0) dev_err(&client->dev, "%s: Failed to Enable Wakeup Source(%d)\n", __func__, ret); } else { dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n", __func__, fuelgauge->fg_irq); goto err_supply_unreg; } } } fuelgauge->cable_type = SEC_BATTERY_CABLE_NONE; fuelgauge->sleep_initial_update_of_soc = false; fuelgauge->initial_update_of_soc = true; fuelgauge->probe_done = true; fuelgauge->init_start = 1; pr_info("%s: S2MU107 Fuelgauge Driver Loaded\n", __func__); return 0; err_supply_unreg: power_supply_unregister(fuelgauge->psy_fg); err_data_free: if (client->dev.of_node) kfree(fuelgauge->pdata); err_parse_dt: err_parse_dt_nomem: mutex_destroy(&fuelgauge->fg_lock); kfree(fuelgauge); return ret; } static const struct i2c_device_id s2mu107_fuelgauge_id[] = { {"s2mu107-fuelgauge", 0}, {} }; static void s2mu107_fuelgauge_shutdown(struct i2c_client *client) { struct s2mu107_fuelgauge_data *fuelgauge = i2c_get_clientdata(client); if (!fuelgauge->i2c) { pr_err("%s: no i2c client\n", __func__); return; } } static int s2mu107_fuelgauge_remove(struct i2c_client *client) { struct s2mu107_fuelgauge_data *fuelgauge = i2c_get_clientdata(client); if (fuelgauge->pdata->fuel_alert_soc >= 0) wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock); return 0; } #if defined CONFIG_PM static int s2mu107_fuelgauge_suspend(struct device *dev) { return 0; } static int s2mu107_fuelgauge_resume(struct device *dev) { struct s2mu107_fuelgauge_data *fuelgauge = dev_get_drvdata(dev); fuelgauge->sleep_initial_update_of_soc = true; return 0; } #else #define s2mu107_fuelgauge_suspend NULL #define s2mu107_fuelgauge_resume NULL #endif static SIMPLE_DEV_PM_OPS(s2mu107_fuelgauge_pm_ops, s2mu107_fuelgauge_suspend, s2mu107_fuelgauge_resume); static struct i2c_driver s2mu107_fuelgauge_driver = { .driver = { .name = "s2mu107-fuelgauge", .owner = THIS_MODULE, .pm = &s2mu107_fuelgauge_pm_ops, .of_match_table = s2mu107_fuelgauge_match_table, }, .probe = s2mu107_fuelgauge_probe, .remove = s2mu107_fuelgauge_remove, .shutdown = s2mu107_fuelgauge_shutdown, .id_table = s2mu107_fuelgauge_id, }; static int __init s2mu107_fuelgauge_init(void) { pr_info("%s: S2MU107 Fuelgauge Init\n", __func__); return i2c_add_driver(&s2mu107_fuelgauge_driver); } static void __exit s2mu107_fuelgauge_exit(void) { i2c_del_driver(&s2mu107_fuelgauge_driver); } module_init(s2mu107_fuelgauge_init); module_exit(s2mu107_fuelgauge_exit); MODULE_DESCRIPTION("Samsung S2MU107 Fuel Gauge Driver"); MODULE_AUTHOR("Samsung Electronics"); MODULE_LICENSE("GPL");